Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 30(2): 460-9, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11285906

RESUMO

Batch experiments were conducted to evaluate the ability of hydroxyapatte (HA) to reduce the solubility of metals, including the primary contaminants of concern, Ni and U, from contaminated sediments located on the Department of Energy's Savannah River Site, near Aiken, SC. Hydroxyapatitie was added to the sediments at application rates of 0, 5, 15.8, and 50 g kg-1. After equilibrating in either 0.02 M KCl or 0.01 M CaCl2, the samples were centrifuged and the supernatants filtered prior to metal, dissolved organic C, and PO4 analyses. The treated soils were then air-dried and changes in solid-phase metal distribution were evaluated using sequential extractions and electron-based microanalysis techniques. Hydroxyapatite was effective at reducing the solubility of U and, to a lesser degree, Ni. Hydroxyapatite was also effective in reducing the solubility of Al, Ba, Cd, Co, Mn, and Pb. Sequential extractions indicate that HA transfers such metals from more chemically labile forms, such as the water-soluble and exchangeable fractions, by altering solid-phase speciation in favor of secondary phosphate precipitates. Hydroxyapatite effectiveness was somewhat reduced in the presence of soluble organics that likely increased contaminant metal solubility through complexation. Arsenic and Cr solubility increased with HA addition, suggesting that the increase in pH and competition from PO4 reduced sorption of oxyanion contaminants. Energy dispersive x-ray (EDXA) analysis conducted in the transmission electron microscope (TEM) confirmed that HA amendment sequesters U, Ni, Pb, and possibly other contaminant metals in association with secondary Al-phosphates.


Assuntos
Materiais Biocompatíveis/química , Durapatita/química , Níquel/química , Poluentes do Solo/análise , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Metais Pesados/química , Solubilidade
2.
Environ Sci Technol ; 33(2): 337-42, 1999 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26528590

RESUMO

Batch equilibrations were performed to investigate the ability of hydroxyapatite (Ca5(PO4)3OH) to chemically immobilize U in two contaminated sediment samples having different organic carbon contents (123 and 49 g kg(-1), respectively). Apatite additions lowered aqueous U to near proposed drinking water standards in batch equilibrations of two distinct sediment strata having total U concentrations of 1703 and 2100 mg kg(-1), respectively. Apatite addition of 50 g kg(-1) reduced the solubility of U to values less than would be expected if autunite (Ca(UO2)2(PO4)2·10H2O) was the controlling solid phase. A comparison of the two sediment types suggests that aqueous phase U may be controlled by both the DOC content through complexation and the equilibrium pH for a given apatite application rate. Sequential chemical extractions demonstrated that apatite amendment transfers U from more chemically labile fractions, including water-soluble, exchangeable, and acid-soluble (pH ≈ 2.55) fractions, to the Mn-occluded fraction (pH ≈ 1.26). This suggests that apatite amendment redirects solid-phase speciation with secondary U phosphates being solubilized due to the lower pH of the Mn-occluded extractant, despite the lack of significant quantities of Mn oxides within these sediments. Energy dispersive X-ray (EDX) analysis conducted in a transmission electron microscope (TEM) confirmed that apatite amendment sequesters some U in secondary Al/Fe phosphate phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA