Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biology (Basel) ; 11(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36358285

RESUMO

Several studies have investigated the relationship between daylight saving time (DST) and sleep alterations, psychiatric disorders, cardiovascular events and traffic accidents. However, very few have monitored participants while maintaining their usual lifestyle before and after DST. Considering that DST transitions modify human behavior and, therefore, people's light exposure patterns, the aim of this study was to investigate the potential effects of DST on circadian variables, considering sleep and, for the first time, the human phase response curve to light. To accomplish this, eight healthy adults (33 ± 11 years old, mean ± SD) were recruited to monitor multivariable circadian markers and light exposure by means of a wearable ambulatory monitoring device: Kronowise®. The following night phase markers were calculated: midpoints of the five consecutive hours of maximum wrist temperature (TM5) and the five consecutive hours of minimum time in movement (TL5), sleep onset and offset, as well as sleep duration and light intensity. TM5 for wrist temperature was set as circadian time 0 h, and the balance between advances and delays considering the phase response curve to light was calculated individually before and after both DST transitions. To assess internal desynchronization, the possible shift in TM5 for wrist temperature and TL5 for time in movement were compared. Our results indicate that the transition to DST seems to force the circadian system to produce a phase advance to adapt to the new time. However, the synchronizing signals provided by natural and personal light exposure are not in line with such an advance, which results in internal desynchronization and the need for longer synchronization times. On the contrary, the transition back to ST, which implies a phase delay, is characterized by a faster adaptation and maintenance of internal synchronization, despite the fact that exposure to natural light would favor a phase advance. Considering the pilot nature of this study, further research is needed with higher sample sizes.

2.
PLoS One ; 16(7): e0254171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34252130

RESUMO

An appropriate exposure to the light-dark cycle, with high irradiances during the day and darkness during the night is essential to keep our physiology on time. However, considering the increasing exposure to artificial light at night and its potential harmful effects on health (i.e. chronodisruption and associated health conditions), it is essential to understand the non-visual effects of light in humans. Melatonin suppression is considered the gold standard for nocturnal light effects, and the activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) through the assessment of pupillary light reflex (PLR) has been recently gaining attention. Also, some theoretical models for melatonin suppression and retinal photoreceptors activation have been proposed. Our aim in this study was to determine the influence of correlated color temperature (CCT) on melatonin suppression and PLR, considering two commercial light sources, as well as to explore the possible correlation between both processes. Also, the contribution of irradiance (associated to CCT) was explored through mathematical modelling on a wider range of light sources. For that, melatonin suppression and PLR were experimentally assessed on 16 healthy and young volunteers under two light conditions (warmer, CCT 3000 K; and cooler, CCT 5700 K, at ~5·1018 photons/cm2/sec). Our experimental results yielded greater post-stimulus constriction under the cooler (5700 K, 13.3 ± 1.9%) than under the warmer light (3000 K, 8.7 ± 1.2%) (p < 0.01), although no significant differences were found between both conditions in terms of melatonin suppression. Interestingly, we failed to demonstrate correlation between PLR and melatonin suppression. Although methodological limitations cannot be discarded, this could be due to the existence of different subpopulations of Type 1 ipRGCs differentially contributing to PLR and melatonin suppression, which opens the way for further research on ipRGCs projection in humans. The application of theoretical modelling suggested that CCT should not be considered separately from irradiance when designing nocturnal/diurnal illumination systems. Further experimental studies on wider ranges of CCTs and light intensities are needed to confirm these conclusions.


Assuntos
Luz , Temperatura , Visão Ocular/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Cor , Simulação por Computador , Feminino , Humanos , Masculino , Melatonina/metabolismo , Modelos Biológicos , Reflexo Pupilar/fisiologia , Reflexo Pupilar/efeitos da radiação , Saliva/metabolismo , Adulto Jovem
3.
PLoS One ; 15(11): e0241900, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33152042

RESUMO

We present evidence of pupil response modification, as well as differential theoretical melatonin suppression through selective and dynamic electrochromic filtering of visible light in the 400-500 nm range to minimize chronodisruptive nocturnal blue light exposure. A lower activation of intrinsically photosensitive retinal ganglion cells (ipRGCs), the first step for light to reach a human's internal clock, is related to melatonin secretion therefore avoiding detrimental effects of excessive blue light exposure. Pupillary Light Reflex and Color Naming were experimentally assessed under light filtered by two different coloration states (transmissive and absorptive) of these novel dynamic filters, plus an uncoated test device, in 16 volunteers. Also, different commercial light sources at illuminances ranging from 1 to 1000 lux were differentially filtered and compared in terms of theoretical melatonin suppression. Representative parameters of the pupil responses reflected lower pupil constriction when the electrochromic filters (ECFs) were switched on (absorptive state, blue light is absorbed by the filter) compared to uncoated filters (control sample), but failed to do so under transmissive state (blue light passes through the filter) indicating less activation of ipRGCs under absorptive state (although no significant differences between states was found). Out of eight colors tested, just one showed significant differences in naming between both filter states. Thus, the ECF would have some protecting effect on ipRGC activation with very limited changes in color perception. While there are some limitations of the theoretical model used, the absorptive state yielded significantly lower theoretical melatonin suppression in all those light sources containing blue wavelengths across the illuminance range tested. This would open the way for further research on biological applications of electrochromic devices.


Assuntos
Pupila/fisiologia , Reflexo Pupilar/fisiologia , Células Ganglionares da Retina/fisiologia , Adulto , Cor , Feminino , Humanos , Luz , Masculino , Melatonina/metabolismo , Pessoa de Meia-Idade , Estimulação Luminosa/métodos
4.
Front Physiol ; 10: 822, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297069

RESUMO

During last decades, the way of life in modern societies has deeply modified the temporal adjustment of the circadian system, mainly due to the inappropriate use of artificial lighting and the high prevalence of social jet-lag. Therefore, it becomes necessary to design non-invasive and practical tools to monitor circadian marker rhythms but also its main synchronizer, the light-dark cycle under free-living conditions. The aim of this work was to improve the ambulatory circadian monitoring device (ACM, Kronowise®) capabilities by developing an algorithm that allows to determine light intensity, timing and circadian light stimulation by differentiating between full visible, infrared and circadian light, as well as to discriminate between different light sources (natural and artificial with low and high infrared composition) in subjects under free living conditions. The ACM device is provided with three light sensors: (i) a wide-spectrum sensor (380-1100 nm); (ii) an infrared sensor (700-1100 nm) and (iii) a sensor equipped with a blue filter that mimics the sensitivity curve of the melanopsin photopigment and the melatonin light suppression curve. To calibrate the ACM device, different commercial light sources and sunlight were measured at four different standardized distances with both a spectroradiometer (SPR) and the ACM device. CIE S 026/E:2018 (2018), toolbox software was used to calculate the melanopic stimulation from data recorded by SPR. Although correlation between raw data of luminance measured by ACM and SPR was strong for both full spectrum (r = 0.946, p < 0.0001) and circadian channel (r = 0.902, p < 0.0001), even stronger correlations were obtained when light sources were clustered in three groups: natural, infrared-rich artificial light and infrared-poor artificial light, and their corresponding linear correlations with SPR were considered (r = 0.997, p < 0.0001 and r = 0.998, p < 0.0001, respectively). Our results show that the ACM device provided with three light sensors and the algorithm developed here allow an accurate detection of light type, intensity and timing for full visible and circadian light, with simultaneous monitoring of several circadian marker rhythms that will open the possibility to explore light synchronization in population groups while they maintain their normal lifestyle.

5.
FEMS Microbiol Lett ; 366(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31210260

RESUMO

The assessment of scientific research is essentially based on several metric parameters, the so-termed Impact Factor perhaps being the predominant one. Despite well-founded criticisms and the wide opposition of reputed scientists, this procedure has become a tool of scientific policy, and is applied in editorial procedures for scientific publication, the evaluation of research groups, the concession of grants, fellowships or even academic positions. Indeed, cutting-edge research is today a competitive and exigent task, where the legitimacy and restrictions of such metric factors remain a preoccupation. However, whatever the policy of evaluation implemented, most breakthroughs are revolutionary, and involve a change in a given paradigm, usually being made by unorthodox scientists, whose scholarly reputation may be questioned by the establishment, and who may often be excluded as a result of the current system of highly productive research.


Assuntos
Políticas Editoriais , Fator de Impacto de Revistas , Editoração
7.
Int J Mol Sci ; 15(12): 23448-500, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25526564

RESUMO

Currently, in developed countries, nights are excessively illuminated (light at night), whereas daytime is mainly spent indoors, and thus people are exposed to much lower light intensities than under natural conditions. In spite of the positive impact of artificial light, we pay a price for the easy access to light during the night: disorganization of our circadian system or chronodisruption (CD), including perturbations in melatonin rhythm. Epidemiological studies show that CD is associated with an increased incidence of diabetes, obesity, heart disease, cognitive and affective impairment, premature aging and some types of cancer. Knowledge of retinal photoreceptors and the discovery of melanopsin in some ganglion cells demonstrate that light intensity, timing and spectrum must be considered to keep the biological clock properly entrained. Importantly, not all wavelengths of light are equally chronodisrupting. Blue light, which is particularly beneficial during the daytime, seems to be more disruptive at night, and induces the strongest melatonin inhibition. Nocturnal blue light exposure is currently increasing, due to the proliferation of energy-efficient lighting (LEDs) and electronic devices. Thus, the development of lighting systems that preserve the melatonin rhythm could reduce the health risks induced by chronodisruption. This review addresses the state of the art regarding the crosstalk between light and the circadian system.


Assuntos
Ritmo Circadiano/fisiologia , Melatonina/fisiologia , Fotoperíodo , Animais , Saúde , Humanos , Luz , Iluminação , Retina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA