Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982461

RESUMO

Early organogenesis represents a key step in animal development, during which pluripotent cells diversify to initiate organ formation. Here, we sampled 300,000 single-cell transcriptomes from mouse embryos between E8.5 and E9.5 in 6-h intervals and combined this new dataset with our previous atlas (E6.5-E8.5) to produce a densely sampled timecourse of >400,000 cells from early gastrulation to organogenesis. Computational lineage reconstruction identified complex waves of blood and endothelial development, including a new programme for somite-derived endothelium. We also dissected the E7.5 primitive streak into four adjacent regions, performed scRNA-seq and predicted cell fates computationally. Finally, we defined developmental state/fate relationships by combining orthotopic grafting, microscopic analysis and scRNA-seq to transcriptionally determine cell fates of grafted primitive streak regions after 24 h of in vitro embryo culture. Experimentally determined fate outcomes were in good agreement with computationally predicted fates, demonstrating how classical grafting experiments can be revisited to establish high-resolution cell state/fate relationships. Such interdisciplinary approaches will benefit future studies in developmental biology and guide the in vitro production of cells for organ regeneration and repair.


Assuntos
Gastrulação , Organogênese , Camundongos , Animais , Diferenciação Celular , Organogênese/genética , Linha Primitiva , Endotélio , Embrião de Mamíferos , Mamíferos
2.
PLoS Comput Biol ; 19(8): e1011324, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37624866

RESUMO

BACKGROUND: The majority of high-throughput single-cell molecular profiling methods quantify RNA expression; however, recent multimodal profiling methods add simultaneous measurement of genomic, proteomic, epigenetic, and/or spatial information on the same cells. The development of new statistical and computational methods in Bioconductor for such data will be facilitated by easy availability of landmark datasets using standard data classes. RESULTS: We collected, processed, and packaged publicly available landmark datasets from important single-cell multimodal protocols, including CITE-Seq, ECCITE-Seq, SCoPE2, scNMT, 10X Multiome, seqFISH, and G&T. We integrate data modalities via the MultiAssayExperiment Bioconductor class, document and re-distribute datasets as the SingleCellMultiModal package in Bioconductor's Cloud-based ExperimentHub. The result is single-command actualization of landmark datasets from seven single-cell multimodal data generation technologies, without need for further data processing or wrangling in order to analyze and develop methods within Bioconductor's ecosystem of hundreds of packages for single-cell and multimodal data. CONCLUSIONS: We provide two examples of integrative analyses that are greatly simplified by SingleCellMultiModal. The package will facilitate development of bioinformatic and statistical methods in Bioconductor to meet the challenges of integrating molecular layers and analyzing phenotypic outputs including cell differentiation, activity, and disease.


Assuntos
Ecossistema , Proteômica , Diferenciação Celular , Biologia Computacional , Epigenômica
3.
Nat Rev Genet ; 24(11): 739-754, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37365273

RESUMO

The interplay between chromatin, transcription factors and genes generates complex regulatory circuits that can be represented as gene regulatory networks (GRNs). The study of GRNs is useful to understand how cellular identity is established, maintained and disrupted in disease. GRNs can be inferred from experimental data - historically, bulk omics data - and/or from the literature. The advent of single-cell multi-omics technologies has led to the development of novel computational methods that leverage genomic, transcriptomic and chromatin accessibility information to infer GRNs at an unprecedented resolution. Here, we review the key principles of inferring GRNs that encompass transcription factor-gene interactions from transcriptomics and chromatin accessibility data. We focus on the comparison and classification of methods that use single-cell multimodal data. We highlight challenges in GRN inference, in particular with respect to benchmarking, and potential further developments using additional data modalities.

4.
Genome Biol ; 23(1): 202, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163261

RESUMO

BACKGROUND: Perturbation of DNA methyltransferases (DNMTs) and of the active DNA demethylation pathway via ten-eleven translocation (TET) methylcytosine dioxygenases results in severe developmental defects and embryonic lethality. Dynamic control of DNA methylation is therefore vital for embryogenesis, yet the underlying mechanisms remain poorly understood. RESULTS: Here we report a single-cell transcriptomic atlas from Dnmt and Tet mutant mouse embryos during early organogenesis. We show that both the maintenance and de novo methyltransferase enzymes are dispensable for the formation of all major cell types at E8.5. However, DNA methyltransferases are required for silencing of prior or alternative cell fates such as pluripotency and extraembryonic programmes. Deletion of all three TET enzymes produces substantial lineage biases, in particular, a failure to generate primitive erythrocytes. Single-cell multi-omics profiling moreover reveals that this is linked to a failure to demethylate distal regulatory elements in Tet triple-knockout embryos. CONCLUSIONS: This study provides a detailed analysis of the effects of perturbing DNA methylation on mouse organogenesis at a whole organism scale and affords new insights into the regulatory mechanisms of cell fate decisions.


Assuntos
Metilação de DNA , Dioxigenases , Animais , DNA/metabolismo , Dioxigenases/genética , Metiltransferases/metabolismo , Camundongos , Organogênese/genética
5.
Cell Stem Cell ; 29(3): 449-459.e6, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35216671

RESUMO

The activation of the embryonic genome marks the first major wave of transcription in the developing organism. Zygotic genome activation (ZGA) in mouse 2-cell embryos and 8-cell embryos in humans is crucial for development. Here, we report the discovery of human 8-cell-like cells (8CLCs) among naive embryonic stem cells, which transcriptionally resemble the 8-cell human embryo. They express ZGA markers, including ZSCAN4 and LEUTX, and transposable elements, such as HERVL and MLT2A1. 8CLCs show reduced SOX2 levels and can be identified using TPRX1 and H3.Y marker proteins in vitro. Overexpression of the transcription factor DUX4 and spliceosome inhibition increase human ZGA-like transcription. Excitingly, the 8CLC markers TPRX1 and H3.Y are also expressed in ZGA-stage 8-cell human embryos and may thus be relevant in vivo. 8CLCs provide a unique opportunity to characterize human ZGA-like transcription and might provide critical insights into early events in embryogenesis in humans.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Zigoto , Animais , Desenvolvimento Embrionário/genética , Genoma Humano , Humanos , Camundongos , Fatores de Transcrição/metabolismo , Zigoto/metabolismo
6.
Nat Methods ; 19(2): 179-186, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35027765

RESUMO

Factor analysis is a widely used method for dimensionality reduction in genome biology, with applications from personalized health to single-cell biology. Existing factor analysis models assume independence of the observed samples, an assumption that fails in spatio-temporal profiling studies. Here we present MEFISTO, a flexible and versatile toolbox for modeling high-dimensional data when spatial or temporal dependencies between the samples are known. MEFISTO maintains the established benefits of factor analysis for multimodal data, but enables the performance of spatio-temporally informed dimensionality reduction, interpolation, and separation of smooth from non-smooth patterns of variation. Moreover, MEFISTO can integrate multiple related datasets by simultaneously identifying and aligning the underlying patterns of variation in a data-driven manner. To illustrate MEFISTO, we apply the model to different datasets with spatial or temporal resolution, including an evolutionary atlas of organ development, a longitudinal microbiome study, a single-cell multi-omics atlas of mouse gastrulation and spatially resolved transcriptomics.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Microbioma Gastrointestinal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Software , Animais , Evolução Molecular , Humanos , Lactente , Estudos Longitudinais , Análise de Célula Única , Análise Espaço-Temporal
9.
Nat Biotechnol ; 39(10): 1202-1215, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33941931

RESUMO

The development of single-cell multimodal assays provides a powerful tool for investigating multiple dimensions of cellular heterogeneity, enabling new insights into development, tissue homeostasis and disease. A key challenge in the analysis of single-cell multimodal data is to devise appropriate strategies for tying together data across different modalities. The term 'data integration' has been used to describe this task, encompassing a broad collection of approaches ranging from batch correction of individual omics datasets to association of chromatin accessibility and genetic variation with transcription. Although existing integration strategies exploit similar mathematical ideas, they typically have distinct goals and rely on different principles and assumptions. Consequently, new definitions and concepts are needed to contextualize existing methods and to enable development of new methods.


Assuntos
Biologia Computacional , Interpretação Estatística de Dados , Análise de Célula Única , Animais , Cromatina/genética , Cromatina/metabolismo , Variação Genética , Genômica , Humanos , Medicina de Precisão
10.
Genome Biol ; 22(1): 114, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879195

RESUMO

High-throughput single-cell measurements of DNA methylomes can quantify methylation heterogeneity and uncover its role in gene regulation. However, technical limitations and sparse coverage can preclude this task. scMET is a hierarchical Bayesian model which overcomes sparsity, sharing information across cells and genomic features to robustly quantify genuine biological heterogeneity. scMET can identify highly variable features that drive epigenetic heterogeneity, and perform differential methylation and variability analyses. We illustrate how scMET facilitates the characterization of epigenetically distinct cell populations and how it enables the formulation of novel hypotheses on the epigenetic regulation of gene expression. scMET is available at https://github.com/andreaskapou/scMET .


Assuntos
Teorema de Bayes , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Heterogeneidade Genética , Análise de Célula Única/métodos , Software , Algoritmos , Biologia Computacional/métodos
11.
mSystems ; 6(2)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727397

RESUMO

Bacterial microbiota play a critical role in mediating local and systemic immunity, and shifts in these microbial communities have been linked to impaired outcomes in critical illness. Emerging data indicate that other intestinal organisms, including bacteriophages, viruses of eukaryotes, fungi, and protozoa, are closely interlinked with the bacterial microbiota and their host, yet their collective role during antibiotic perturbation and critical illness remains to be elucidated. We employed multi-omics factor analysis (MOFA) to systematically integrate the bacterial (16S rRNA), fungal (intergenic transcribed spacer 1 rRNA), and viral (virus discovery next-generation sequencing) components of the intestinal microbiota of 33 critically ill patients with and without sepsis and 13 healthy volunteers. In addition, we quantified the absolute abundances of bacteria and fungi using 16S and 18S rRNA PCRs and characterized the short-chain fatty acids (SCFAs) butyrate, acetate, and propionate using nuclear magnetic resonance spectroscopy. We observe that a loss of the anaerobic intestinal environment is directly correlated with an overgrowth of aerobic pathobionts and their corresponding bacteriophages as well as an absolute enrichment of opportunistic yeasts capable of causing invasive disease. We also observed a strong depletion of SCFAs in both disease states, which was associated with an increased absolute abundance of fungi with respect to bacteria. Therefore, these findings illustrate the complexity of transkingdom changes following disruption of the intestinal bacterial microbiome.IMPORTANCE While numerous studies have characterized antibiotic-induced disruptions of the bacterial microbiome, few studies describe how these disruptions impact the composition of other kingdoms such as viruses, fungi, and protozoa. To address this knowledge gap, we employed MOFA to systematically integrate viral, fungal, and bacterial sequence data from critically ill patients (with and without sepsis) and healthy volunteers, both prior to and following exposure to broad-spectrum antibiotics. In doing so, we show that modulation of the bacterial component of the microbiome has implications extending beyond this kingdom alone, enabling the overgrowth of potentially invasive fungi and viruses. While numerous preclinical studies have described similar findings in vitro, we confirm these observations in humans using an integrative analytic approach. These findings underscore the potential value of multi-omics data integration tools in interrogating how different components of the microbiota contribute to disease states. In addition, our findings suggest that there is value in further studying potential adjunctive therapies using anaerobic bacteria or SCFAs to reduce fungal expansion after antibiotic exposure, which could ultimately lead to improved outcomes in the intensive care unit (ICU).

12.
Genome Biol ; 21(1): 111, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393329

RESUMO

Technological advances have enabled the profiling of multiple molecular layers at single-cell resolution, assaying cells from multiple samples or conditions. Consequently, there is a growing need for computational strategies to analyze data from complex experimental designs that include multiple data modalities and multiple groups of samples. We present Multi-Omics Factor Analysis v2 (MOFA+), a statistical framework for the comprehensive and scalable integration of single-cell multi-modal data. MOFA+ reconstructs a low-dimensional representation of the data using computationally efficient variational inference and supports flexible sparsity constraints, allowing to jointly model variation across multiple sample groups and data modalities.


Assuntos
Análise Fatorial , Análise de Célula Única , Animais , Metilação de DNA , Desenvolvimento Embrionário , Lobo Frontal/metabolismo , Camundongos , Análise de Sequência de RNA
13.
Nature ; 576(7787): 487-491, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31827285

RESUMO

Formation of the three primary germ layers during gastrulation is an essential step in the establishment of the vertebrate body plan and is associated with major transcriptional changes1-5. Global epigenetic reprogramming accompanies these changes6-8, but the role of the epigenome in regulating early cell-fate choice remains unresolved, and the coordination between different molecular layers is unclear. Here we describe a single-cell multi-omics map of chromatin accessibility, DNA methylation and RNA expression during the onset of gastrulation in mouse embryos. The initial exit from pluripotency coincides with the establishment of a global repressive epigenetic landscape, followed by the emergence of lineage-specific epigenetic patterns during gastrulation. Notably, cells committed to mesoderm and endoderm undergo widespread coordinated epigenetic rearrangements at enhancer marks, driven by ten-eleven translocation (TET)-mediated demethylation and a concomitant increase of accessibility. By contrast, the methylation and accessibility landscape of ectodermal cells is already established in the early epiblast. Hence, regulatory elements associated with each germ layer are either epigenetically primed or remodelled before cell-fate decisions, providing the molecular framework for a hierarchical emergence of the primary germ layers.


Assuntos
Metilação de DNA , Epigênese Genética , Gástrula/citologia , Gástrula/metabolismo , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA/genética , Análise de Célula Única , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Cromatina/genética , Cromatina/metabolismo , Desmetilação , Corpos Embrioides/citologia , Endoderma/citologia , Endoderma/embriologia , Endoderma/metabolismo , Elementos Facilitadores Genéticos/genética , Epigenoma/genética , Eritropoese , Análise Fatorial , Gástrula/embriologia , Gastrulação/fisiologia , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA/análise , Fatores de Tempo , Dedos de Zinco
14.
Mol Syst Biol ; 14(6): e8124, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925568

RESUMO

Multi-omics studies promise the improved characterization of biological processes across molecular layers. However, methods for the unsupervised integration of the resulting heterogeneous data sets are lacking. We present Multi-Omics Factor Analysis (MOFA), a computational method for discovering the principal sources of variation in multi-omics data sets. MOFA infers a set of (hidden) factors that capture biological and technical sources of variability. It disentangles axes of heterogeneity that are shared across multiple modalities and those specific to individual data modalities. The learnt factors enable a variety of downstream analyses, including identification of sample subgroups, data imputation and the detection of outlier samples. We applied MOFA to a cohort of 200 patient samples of chronic lymphocytic leukaemia, profiled for somatic mutations, RNA expression, DNA methylation and ex vivo drug responses. MOFA identified major dimensions of disease heterogeneity, including immunoglobulin heavy-chain variable region status, trisomy of chromosome 12 and previously underappreciated drivers, such as response to oxidative stress. In a second application, we used MOFA to analyse single-cell multi-omics data, identifying coordinated transcriptional and epigenetic changes along cell differentiation.


Assuntos
Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Antineoplásicos/uso terapêutico , Simulação por Computador , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Modelos Estatísticos , Estresse Oxidativo , Software , Transcriptoma
15.
Nat Commun ; 9(1): 781, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472610

RESUMO

Parallel single-cell sequencing protocols represent powerful methods for investigating regulatory relationships, including epigenome-transcriptome interactions. Here, we report a single-cell method for parallel chromatin accessibility, DNA methylation and transcriptome profiling. scNMT-seq (single-cell nucleosome, methylation and transcription sequencing) uses a GpC methyltransferase to label open chromatin followed by bisulfite and RNA sequencing. We validate scNMT-seq by applying it to differentiating mouse embryonic stem cells, finding links between all three molecular layers and revealing dynamic coupling between epigenomic layers during differentiation.


Assuntos
Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Nucleossomos/metabolismo , Análise de Sequência de DNA/métodos , Transcrição Gênica , Animais , Diferenciação Celular , Metilação de DNA , Feminino , Histonas/metabolismo , Masculino , Camundongos , Nucleossomos/genética , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...