Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38464280

RESUMO

Phosphatase and Tensin Homologue (PTEN) is one of the most frequently lost tumor suppressors in cancer and the predominant negative regulator of the PI3K/AKT signaling axis. A growing body of evidence has highlighted the loss of PTEN with immuno-modulatory functions including the upregulation of the programmed death ligand-1 (PD-L1), an altered tumor derived secretome that drives an immunosuppressive tumor immune microenvironment (TIME), and resistance to certain immunotherapies. Given their roles in immunosuppression and tumor growth, we examined whether the loss of PTEN would impact the biogenesis, cargo, and function of extracellular vesicles (EVs) in the context of the anti-tumor associated cytokine interferon-γ (IFN-γ). Through genetic and pharmacological approaches, we show that PD-L1 expression is regulated by JAK/STAT signaling, not PI3K signaling. Instead, we observe that PTEN loss positively upregulates cell surface levels of PD-L1 and enhances the biogenesis of EVs enriched with PD-L1 in a PI3K-dependent manner. We demonstrate that because of these changes, EVs derived from glioma cells lacking PTEN have a greater ability to suppress T cell receptor (TCR) signaling. Taken together, these findings provide important new insights into how the loss of PTEN can contribute to an immunosuppressive TIME, facilitate immune evasion, and highlight a novel role for PI3K signaling in the regulation of EV biogenesis and the cargo they contain.

2.
Mitochondrion ; 64: 125-135, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35337984

RESUMO

Alzheimer's disease (AD) is a leading neurodegenerative pathology associated with aging worldwide. It is estimated that AD prevalence will increase from 5.8 million people today to 13.8 million by 2050 in the United States alone. AD effects in the brain are well known; however, there is still a lack of knowledge about the cellular mechanisms behind the origin of AD. It is known that AD induces cellular stress affecting the energy metabolism in brain cells. During the pathophysiological advancement of AD, damaged mitochondria enter a vicious cycle, producing reactive oxygen species (ROS), harming mitochondrial DNA and proteins, leading to more ROS and cellular death. Additionally, mitochondria are interconnected with the plaques formed by amyloid-ß in AD and have underlying roles in the progression of the disease and severity. For years, the biomedical field struggled to develop new therapeutic options for AD without a significant advancement. However, mitochondria are striking back existing outside cells in a new mechanism of intercellular communication. Extracellular mitochondria are exchanged from healthy to damaged cells to rescue those with a perturbed metabolism in a process that could be applied as a new therapeutic option to repair those brain cells affected by AD. In this review we highlight key aspects of mitochondria's role in CNS' physiology and neurodegenerative disorders, focusing on AD. We also suggest how mitochondria strikes back as a therapeutic target and as a potential agent to be transplanted to repair neurons affected by AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , DNA Mitocondrial/genética , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Mitochondrion ; 64: 34-44, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218960

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, worldwide. PD neuro-energetically affects the extrapyramidal system, by the progressive loss of striatal dopaminergic neurons in the substantia nigra pars compacta, leading to motor impairment. During the progression of PD, there will be an increase in mitochondrial dysfunction, reactive oxygen species (ROS), stress and accumulation of α-synuclein in neurons. This results in mitochondrial mutations altering their function and fission-fusion mechanisms and central nervous system (CNS) degeneration. Intracellular mitochondrial dysfunction has been studied for a long time in PD due to the decline of mitochondrial dynamics inside neurons. Mitochondrial damage-associated molecular patterns (DAMPs) have been known to contribute to several CNS pathologies especially PD pathogenesis. New and exciting evidence regarding the exchange of mitochondria between healthy to damaged cells in the central nervous system (CNS) and the therapeutic use of the artificial mitochondrial transfer/transplant (AMT) marked a return of this organelle to develop innovative therapeutic procedures for PD. The focus of this review aims to shed light on the role of mitochondria, both intra and extracellularly in PD, and how AMT could be used to generate new potential therapies in the fight against PD. Moreover, we suggest that mitochondrial therapy could work as a preventative measure, motivating the field to move towards this goal.


Assuntos
Doença de Parkinson , Neurônios Dopaminérgicos/patologia , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial , Doença de Parkinson/patologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...