Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteomics ; 23(23-24): e2300052, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821362

RESUMO

Selenium is a well-known health-relevant element related with cancer chemoprevention, neuroprotective roles, beneficial in diabetes, and in several infectious diseases, among others. It is naturally present in some foods, but deficiency in people led to the production of nutraceuticals, supplements, and functional food enriched in this element. There is a U-shaped link between selenium levels and health and a narrow range between toxic and essential levels, and thus, supplementation should be performed carefully. Omics methodologies have become valuable approaches to delve into the responses of dietary selenium in mammals that allowed a deeper knowledge about the metabolism of this element as well as its biological role. In this review, we discuss omics approaches from the workflows to their applications that has been previously used to deep insight into the metabolism of dietary selenium. There is a special focus on selenoproteins, metabolomics responses in blood and tissues (e.g., brain, reproductive organs, etc.) as well as the impact on gut microbiota and its metabolites profile. Thus, we mainly reviewed heteroatom-tagged proteomics, metallomics, metabolomics, and metataxonomics, usually combined with transcriptomics, genomics, and other molecular methods.


Assuntos
Microbioma Gastrointestinal , Selênio , Animais , Humanos , Selênio/farmacologia , Selênio/metabolismo , Suplementos Nutricionais , Proteômica/métodos , Genômica , Metabolômica , Mamíferos/metabolismo
2.
Environ Pollut ; 316(Pt 2): 120629, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370976

RESUMO

This study deals with the potential release of metal/loids from sulfide mine wastes upon weathering and the health risks associated with their accidental ingestion. To address this, a complete chemical and mineralogical characterization of a variety of sulfide mine wastes was performed alongside a determination of metal/loid bioaccessibility through leaching tests simulating human digestive and lung fluids. The mine wastes consisted predominantly of Fe (35-55% of Fe2O3) and exhibited high concentrations of trace metalloids such as As (382-4310 mg/kg), Pb (205-15,974 mg/kg), Cu (78-1083 mg/kg), Zn (274-1863 mg/kg), or Sb (520-1816 mg/kg). Most wastes with high concentrations of soluble compounds are considered hazardous according to the European regulations due to the exceedance of threshold values for As, Pb, Cr, Cu, Sb, sulfates, and Zn determined by standardized tests. In general terms, the absorption of waste-hosted metals through both digestive and respiratory routes was low compared to the total metal contents of the wastes, with values below 8% of the total concentration in wastes for most metal/loids including Cu, Zn, As, Cd, Tl, or U. However, some metals exhibited a significantly higher absorption potential, especially through the respiratory route, reaching values of up to 17% for Cr and 75% for Pb, highlighting the strong bioaccessibility of Pb in certain sulfide wastes. Despite the high metal/loid concentrations observed in the studied wastes, a health risk assessment indicated that some non-carcinogenic effects could be observed in children only following the accidental digestion of Pb.


Assuntos
Metaloides , Metais Pesados , Poluentes do Solo , Criança , Humanos , Poluentes do Solo/análise , Chumbo , Monitoramento Ambiental , Mineração , Metaloides/análise , Sulfetos , Metais Pesados/análise , Medição de Risco
3.
Mol Nutr Food Res ; 66(16): e2200071, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35687731

RESUMO

SCOPE: Lack of information about the impact of maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the elemental and metabolomic profile of human milk (HM). METHODS AND RESULTS: An observational study on HM from mothers with COVID-19 is conducted including a prepandemic control group. Maternal-infant clinical records and symptomatology are recorded. The absolute quantification of elements and untargeted relative metabolomic profiles are determined by inductively coupled plasma mass spectrometry and gas chromatography coupled to mass spectrometry, respectively. Associations of HM SARS-CoV-2 antibodies with elemental and metabolomic profiles are studied. COVID-19 has a significant impact on HM composition. COVID-19 reduces the concentrations of Fe, Cu, Se, Ni, V, and Aluminium (Al) and increases Zn compared to prepandemic control samples. A total of 18 individual metabolites including amino acids, peptides, fatty acids and conjugates, purines and derivatives, alcohols, and polyols are significantly different in HM from SARS-CoV-2 positive mothers. Aminoacyl-tRNA biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine, and linoleic acid pathways are significantly altered. Differences are obtained depending on COVID-19 symptomatic and asymptomatic status. CONCLUSIONS: This study provides unique insights about the impact of maternal SARS-CoV-2 infection on the elemental and metabolomic profiles of HM that warrants further research due the potential implications for infant health.


Assuntos
COVID-19 , Leite Humano , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lactente , Leite Humano/química , Mães , Fenilalanina/análise , Fenilalanina/metabolismo , SARS-CoV-2
4.
Anal Chim Acta ; 1176: 338620, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34399890

RESUMO

Omic methodologies have become key analytical tools in a wide number of research topics such as systems biology, environmental analysis, biomedicine or food analysis. They are especially useful when they are combined providing a new perspective and a holistic view of the analytical problem. Methodologies for microbiota analysis have been mostly focused on genome sequencing. However, information provided by these metagenomic studies is limited to the identification of the presence of genes, taxa and their inferred functionality. To achieve a deeper knowledge of microbial functionality in health and disease, especially in dysbiosis conditions related to metal and metalloid exposure, the introduction of additional meta-omic approaches including metabolomics, metallomics, metatranscriptomics and metaproteomics results essential. The possible impact of metals and metalloids on the gut microbiota and their effects on gut-brain axis (GBA) only begin to be figured out. To this end new analytical workflows combining powerful tools are claimed such as high resolution mass spectrometry and heteroatom-tagged proteomics for the absolute quantification of metal-containing biomolecules using the metal as a "tag" in a sensitive and selective detector (e.g. ICP-MS). This review focus on current analytical methodologies related with the analytical techniques and procedures available for metallomics and microbiota analysis with a special attention on their advantages and drawbacks.


Assuntos
Microbiota , Espectrometria de Massas , Metabolômica , Metais , Proteômica
5.
Environ Sci Pollut Res Int ; 28(20): 25014-25034, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33782823

RESUMO

The growing interest of our society for the environment, climate change, and the assurance of the quality of life and health has been the motor of new methodological proposals that allow a more comprehensive knowledge of the problems to be solved. In this sense, the potential of omic methodologies to study these problems from a global perspective represents a milestone in environmental studies. Therefore, the study of essential and toxic metals has a special interest, particularly in relation to toxicity issues and their association to biological interactions, transport, binding to biomolecules, and behavior in biological interfaces. These studies have promoted new instrumental platforms and methodological approaches that allow addressing these problems. Furthermore, to encompass the reality of molecule-atoms interactions in their completeness, combinations of omics have been tried, focusing on environment, food, and health issues. In this sense, the present work is situated, with the objective of reviewing the most recent methodological proposals in the field of the environment and their applications, considering not only the analytical approaches but also how they have to be applied, the use of bioindicators' exposure experiments in the laboratory, and the potential transfer of the findings from the laboratory to the field. This latter point is a true touchstone, which makes these new analytical methodologies in the necessary tools for understanding the environment and the consequences of its imbalance.


Assuntos
Metais , Qualidade de Vida , Intoxicação por Metais Pesados , Humanos , Metabolômica , Metais/toxicidade
6.
Adv Clin Chem ; 100: 91-137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33453868

RESUMO

Lung cancer (LC) is the second most common cause of death in men after prostate cancer, and the third most recurrent type of tumor in women after breast and colon cancers. Unfortunately, when LC symptoms begin to appear, the disease is already in an advanced stage and the survival rate only reaches 2%. Thus, there is an urgent need for early diagnosis of LC using specific biomarkers, as well as effective therapies and strategies against LC. On the other hand, the influence of metals on more than 50% of proteins is responsible for their catalytic properties or structure, and their presence in molecules is determined in many cases by the genome. Research has shown that redox metal dysregulation could be the basis for the onset and progression of LC disease. Moreover, metals can interact between them through antagonistic, synergistic and competitive mechanisms, and for this reason metals ratios and correlations in LC should be explored. One of the most studied antagonists against the toxic action of metals is selenium, which plays key roles in medicine, especially related to selenoproteins. The study of potential biomarkers able to diagnose the disease in early stage is conditioned by the development of new analytical methodologies. In this sense, omic methodologies like metallomics, proteomics and metabolomics can greatly assist in the discovery of biomarkers for LC early diagnosis.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/metabolismo , Metabolômica , Selenoproteínas/metabolismo , Animais , Biomarcadores Tumorais/análise , Humanos , Neoplasias Pulmonares/diagnóstico
7.
J Chromatogr A ; 1619: 460919, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32037071

RESUMO

One of the most important causes of the high mortality rate and low life expectancy of lung cancer is the detection at advanced stages. Thus, there is an urgent need for early diagnosis and the search of new selective biomarkers. Selenium is an important constituent of selenoproteins and a powerful antioxidant able to protect against cancer. In this work, the absolute quantification of selenium in selenoproteins and the total content in selenometabolites has been performed for the first time in serum from lung cancer patients (LC) and healthy controls (HC). To this end, a method for the simultaneous speciation of selenoproteins using size exclusion chromatography (SEC) and affinity chromatography (AF) with detection by ICP-QQQ-MS, and quantification by isotopic dilution (IDA) (SEC-AF-HPLC-SUID-ICP-QQQ-MS) was developed to determine the selenium concentration in eGPx, SEPP1 and SeAlb, as well as total selenometabolites, to find alterations that may serve as biomarkers of this disease. In the same way, a method based on anion-exchange chromatography coupled to ICP-QQQ-MS was developed to quantify selenometabolites (SeCys2, SeMeSeCys, SeMet, selenite and selenate) in the same LC and HC serum samples. The results showed that the averaged concentrations of selenium in eGPx, SeAlb and selenite were significantly higher in LC patients (LC (eGPx: 21.24 ± 0.77 ng g-1; SeAlb: 49.56 ± 3.16 ng g-1 and Se(IV): 6.20 ± 1.22 ng g-1) than in HC group (eGPx: 16.96 ± 0.53 ng g-1; SeAlb: 38.33 ± 2.66 ng g-1 and Se(IV): 3.56 ± 0.55 ng g-1). In addition, the ratios between selenoproteins and selenometabolites have been calculated for the first to study their potential use as LC biomarkers. The rates eGPx/SEPP1, SEPP1/SeAlb, eGPx/Se(IV) and SEPP1/Se(IV) were significantly different between LC and HC groups.


Assuntos
Análise Química do Sangue/métodos , Neoplasias Pulmonares/sangue , Espectrometria de Massas , Selênio/sangue , Selenoproteínas/sangue , Biomarcadores/sangue , Cromatografia de Afinidade , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Ácido Selenioso/sangue , Selênio/metabolismo , Análise Espectral
8.
Environ Sci Pollut Res Int ; 27(2): 1762-1775, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31758476

RESUMO

Cadmium (Cd) has become one of the most important environmental pollutants in the world, derived from natural and industrial sources, which is known to be accumulated in the human body, producing serious health effects. On the other hand, Selenium (Se) is an essential element for mammals, which is well known for its antagonistic interaction against Cd toxicity, such as the prevention of oxidative stress induced by this element. For this reason, the use of complementary analytical methods to study the homeostasis of metals, "traffic" between different organs and massive information about metabolites altered by the exposure, is of great interest. To this end, a metabolomic workflow based on the use of direct infusion mass spectrometry (DIMS) and gas chromatography mass spectrometry (GC-MS) was applied in mice serum. On the other hand, metal homeostasis and traffic between different organs and serum of mice exposed to Cd and Se have been evaluated by determining the concentration of metals by inductively coupled plasma mass spectrometry. This work demonstrates for the first time that Cd exposure causes a decrease of all the elements studied in the lung except itself. On the other hand, Se provokes As trafficking from metabolically less active organs (brain, lung, and testes) to others with greater metabolic activity (kidney), which also facilitates its excretion. Moreover, when mice are only exposed to Se, it provokes the accumulation of almost all the elements in the kidney, except Cd that increases also in the liver and brain. However, when both elements are simultaneously administered, Se increases Cd concentration in all the organs except in the serum and especially in the testis. On the other hand, important metabolic alterations have been detected in the energy and amino acid metabolism, as well as degradation of phospholipidic membranes, and in free fatty acids. In summary, the results show the high potential of the combined use of organic and inorganic mass spectrometry to establish Cd and Se interaction and the biological impairments caused and to provide information about metal traffic and metabolomic changes in exposure experiments.


Assuntos
Cádmio/toxicidade , Homeostase/efeitos dos fármacos , Selênio/toxicidade , Animais , Cádmio/metabolismo , Masculino , Espectrometria de Massas , Metais/metabolismo , Metais/toxicidade , Camundongos , Selênio/metabolismo
9.
Expert Rev Proteomics ; 16(10): 805-814, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31482748

RESUMO

Introduction: Selenium plays many key roles in health especially in connection with cancer and neurodegenerative diseases. However, it needs to be appreciated that the essentiality/toxicity of selenium depends on both, a narrow range of concentration and the chemical specie involved. In this context, selenoproteins are essential biomolecules against these disorders, mainly due to its antioxidant action. To this end, analytical methodologies may allow identifying and quantifying individual selenospecies in human biofluids and tissues. Areas covered: This review focus on the role of selenoproteins in medicine, with special emphasis in cancer and neurodegenerative diseases, considering the possible link with gut microbiota. In particular, this article reviews the analytical techniques and procedures recently developed for the absolute quantification of selenoproteins and selenometabolites in human biofluids and tissues. Expert commentary: The beneficial role of selenium in human health has been extensively studied and reviewed. However, several challenges remain unsolved as discussed in this article: (i) speciation of selenium (especially selenoproteins) in cancer and neurodegenerative disease patients; (ii) supplementation of selenium in humans using functional foods and nutraceuticals; (iii) the link between selenium and selenoproteins expression and the gut microbiota and (iv) analytical methods and pitfalls for the absolute quantification of selenoproteins and selenometabolites.


Assuntos
Microbioma Gastrointestinal/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , Selenoproteínas/genética , Líquidos Corporais/metabolismo , Suplementos Nutricionais , Humanos , Neoplasias/dietoterapia , Neoplasias/microbiologia , Doenças Neurodegenerativas/dietoterapia , Doenças Neurodegenerativas/microbiologia , Selênio/metabolismo , Selênio/uso terapêutico , Selenoproteínas/isolamento & purificação , Selenoproteínas/metabolismo
10.
Int J Mol Sci ; 20(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759767

RESUMO

Carcinogenesis is a very complex process in which metals have been found to be critically involved. In this sense, a disturbed redox status and metal dyshomeostasis take place during the onset and progression of cancer, and it is well-known that trace elements participate in the activation or inhibition of enzymatic reactions and metalloproteins, in which they usually participate as cofactors. Until now, the role of metals in cancer have been studied as an effect, establishing that cancer onset and progression affects the disturbance of the natural chemical form of the essential elements in the metabolism. However, it has also been studied as a cause, giving insights related to the high exposure of metals giving a place to the carcinogenic process. On the other hand, the chemical species of the metal or metallobiomolecule is very important, since it finally affects the biological activity or the toxicological potential of the element and their mobility across different biological compartments. Moreover, the importance of metal homeostasis and metals interactions in biology has also been demonstrated, and the ratios between some elements were found to be different in cancer patients; however, the interplay of elements is rarely reported. This review focuses on the critical role of metals in lung cancer, which is one of the most insidious forms of cancer, with special attention to the analytical approaches and pitfalls to extract metals and their species from tissues and biofluids, determining the ratios of metals, obtaining classification profiles, and finally defining the metallome of lung cancer.


Assuntos
Biomarcadores/metabolismo , Neoplasias Pulmonares/metabolismo , Metaloproteínas/metabolismo , Humanos , Metais/metabolismo , Oxirredução , Oligoelementos/metabolismo
11.
Phytochem Anal ; 30(2): 198-207, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30426589

RESUMO

INTRODUCTION: The storage of the vegetables products in a controlled atmosphere (CA) with low O2 and high CO2 concentrations, reduces respiration rates and delays the ripening process, and in some cases, improves their quality and organoleptic properties. OBJECTIVE: To obtain deep insight into strawberry fruit metabolic changes caused by these CA treatments. METHODOLOGY: Freshly harvested strawberries were preserved under different atmospheres enriched with 10%, 20% and 30% of CO2 , for 2 days at 0°C, containing in all the cases 5% of O2 and were subjected to a metabolomic analysis based on gas chromatography-mass spectrometry (GC-MS) and direct-infusion with electrospray ionisation source equipped with triple quadrupole coupled to time of flight mass spectrometry (DI-ESI-QqQ-TOF-MS). Partial least square discriminant analysis (PLS-DA) was employed to compare the control and treated samples for the identification of altered metabolites. RESULTS: Several metabolites related to CA treatment could be identified by databases and literature, which are mainly sugars, organic acids and phenolic compounds (bioactive compounds). CONCLUSIONS: Good correlation coefficients were obtained between discriminant metabolites and fruit quality parameters. These results suggest that treated strawberries under CA could be considered as bioactive healthy compounds, suggesting that treated strawberries under CA could be used as raw material for the preparation and formulation of food supplements and nutraceutical products.


Assuntos
Fragaria/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Atmosfera , Dióxido de Carbono/química , Análise Discriminante , Análise dos Mínimos Quadrados
12.
Adv Exp Med Biol ; 1055: 39-66, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29884961

RESUMO

Metallomics is the new paradigm about the metallobiomolecules related to living organisms, considering the interactions between toxic and essential metals, transport through biological fluids, passing across biological membranes and interfaces, synergic and antagonist actions among metal species, and alterations in metabolic pathways triggered by overexpression or inhibition of these metallobiomolecules. These challenging studies require the development of new analytical approaches in order to get suitable information of these species close to their native environment which has promoted the application of new tools based in mass spectrometry under the double focus of elemental (ICP-MS) and molecular (Qq-TOF-MS) mass spectrometry, generally arranged with chromatography in multidimensional platforms. The driving force for the design of these new analytical instrumental arrangements is the analyst imagination who adapts the new metallomic methodology to the new problems. In this work the most recent metallomic approaches proposed have been considered, deepening their application to the most frequent problems related to metal toxicity in environmental issues, such as exposure experiments of mice to toxic metals, interactions and homeostasis of metals, metal imaging, metabolic alterations caused by metallobiomolecules over- or down-expressed, and more interestingly real-life consequences of metal species expression in environmental field studies. In this way, the application of two-dimensional chromatographic approaches with ICP-MS detection, the use of multidimensional chromatography-column-switching-ICP-MS devices, metal imaging with LA-ICP-MS, combined application of metallomics and metabolomics for environmental toxicological appraisal, and the application of these metallomic techniques in environmental field studies have been reviewed.


Assuntos
Meio Ambiente , Metais/análise , Metais/química
13.
Environ Sci Pollut Res Int ; 24(28): 22631-22648, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28812243

RESUMO

The trihalomethanes (TTHMs) and others disinfection by-products (DBPs) are formed in drinking water by the reaction of chlorine with organic precursors contained in the source water, in two consecutive and linked stages, that starts at the treatment plant and continues in second stage along the distribution system (DS) by reaction of residual chlorine with organic precursors not removed. Following this approach, this study aimed at developing a two-stage empirical model for predicting the formation of TTHMs in the water treatment plant and subsequently their evolution along the water distribution system (WDS). The aim of the two-stage model was to improve the predictive capability for a wide range of scenarios of water treatments and distribution systems. The two-stage model was developed using multiple regression analysis from a database (January 2007 to July 2012) using three different treatment processes (conventional and advanced) in the water supply system of Aljaraque area (southwest of Spain). Then, the new model was validated using a recent database from the same water supply system (January 2011 to May 2015). The validation results indicated no significant difference in the predictive and observed values of TTHM (R 2 0.874, analytical variance <17%). The new model was applied to three different supply systems with different treatment processes and different characteristics. Acceptable predictions were obtained in the three distribution systems studied, proving the adaptability of the new model to the boundary conditions. Finally the predictive capability of the new model was compared with 17 other models selected from the literature, showing satisfactory results prediction and excellent adaptability to treatment processes.


Assuntos
Trialometanos/química , Purificação da Água , Abastecimento de Água , Cloro/química , Desinfecção/métodos , Modelos Teóricos , Análise Multivariada , Espanha , Trialometanos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
14.
Biochimie ; 91(10): 1311-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19616599

RESUMO

The present work shows the possibilities of metallomics to characterize metal-linking proteins in Mus Musculus that could be used in environmental assessment. The laboratory mouse M. musculus is used as reference of gene/protein sequence databases to address methodological approaches based on changes in transcripts regulation, proteins expression and metalloproteins profiles in the environmental bioindicator Mus spretus that has been demonstrated to be genetically homologous to M. Musculus. A metallomic approach using size exclusion chromatography with inductively coupled plasma-mass spectrometry detection (SEC-ICP-MS) was applied to cytosolic extracts from different M. musculus organs: lung, liver, spleen, kidney, brain, testicle, hearth and muscle. The resulting profiles of metallobiomolecules revealed the presence of a Cu-binding fraction in the 7-10 kDa range which was not present in the other tissues, can be associated to low molecular mass metallothionein-like proteins. The application of reverse phase chromatography with ICP-MS detection to this fraction gives two peaks that have been isolated for later identification by tandem mass spectrometry. The mass balance of copper evaluated by ICP-MS analysis of the digested brain fractions isolated by SEC and RP chromatography reveals good recoveries of the separations. The application of 2-DE to both crude brain extract and SEC fraction (7-10 kDa) reveals the considerably reduction of the number of proteins confirming that a good purification has been attained by SEC. This integration of metallomics with proteomics and transcriptomics can be useful in further studies involving the free-living mouse M. spretus for assessment of environmental issues.


Assuntos
Metais/metabolismo , Proteômica/métodos , Animais , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Metaloproteínas/metabolismo , Camundongos
15.
Rapid Commun Mass Spectrom ; 22(19): 3053-60, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18763246

RESUMO

Advances in analytical methodology for speciation of manganese in pine nuts are presented in this work. The approach is based on the use of orthogonal chromatographic systems, namely size-exclusion chromatography (SEC) of the extracts and strong anion exchange (IEC) of the fractions collected by the first column. In both columns, manganese elution is first monitored by a quadrupole inductively coupled plasma mass spectrometry (ICP-MS) instrument equipped with an octopole reaction cell and an ultraviolet (UV) detector. SEC is performed by using two columns covering the molecular weight range from <10 to 70 kDa that allows an initial screening of the molecular weight of the Mn species. The higher resolution capability of the low molecular weight range column is the reason to use the latter for further experiments. The fraction from SEC-ICP-MS in which Mn is present at highest concentration is submitted to IEC-ICP-MS allowing Mn-citrate and MnCl(2) identification by retention time matching with standards. The concentration of these species is estimated to be 75 and 125 microg kg(-1) (as Mn), respectively, in the pine nuts samples and the presence of Mn-citrate is confirmed by nanoelectrospray ionization quadrupole time-of-flight mass spectrometry (nESI-QqTOF-MS). In the same fraction, a third Mn-containing peak is detected in the IEC-UV-ICP-MS chromatogram. This peak corresponds to a protein containing Mn that was later submitted to a tryptic digestion and analyzed by nESI-QqTOF. The MS/MS data of a doubly charged peptide are used to obtain the sequence of the protein with the Mascot search engine. The peak turned out to be isocitrate dehydrogenase, a protein commonly associated with Mn.


Assuntos
Biopolímeros/química , Cromatografia Líquida de Alta Pressão/métodos , Análise de Alimentos/métodos , Compostos de Manganês/química , Nozes/química , Pinus/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrofotometria Ultravioleta/métodos , Sítios de Ligação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...