Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Curr Cardiol Rep ; 24(9): 1077-1084, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35900642

RESUMO

PURPOSE OF REVIEW: The disease burden of inherited dilated cardiomyopathy (DCM) is large and likely underestimated. This population stands to benefit immensely from therapeutic approaches tailored to the underlying genetic causes. Here, we review recent advances in understanding novel genotype-phenotype relationships and how these can improve the care of patients with inherited DCM. RECENT FINDINGS: In the last several years, discovery of novel DCM-associated genes, gene-specific DCM outcomes, and nuanced information about variant-environment interactions have advanced our understanding of inherited DCM. Specifically, novel associations of genes with specific clinical phenotypes can help to assess sudden cardiac death risk and guide counseling around behavioral and environmental exposures that may worsen disease. Important expansions of the current genotype-phenotype profiling include the newly DCM-associated FLNC variant, prognostically significant LMNA, DSP inflammatory cardiomyopathy, and the highly penetrant features of RBM20 variants as well as the role of TTN variants in compounding the effects of environmental factors on toxin-mediated DCM. Future directions to improve diagnostic accuracy and prognostic improvement in DCM will center not just on identification of new genes, but also on understanding the interaction of known and novel variants in known DCM genes with patient genetic background and environment.


Assuntos
Cardiomiopatia Dilatada , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/terapia , Morte Súbita Cardíaca/etiologia , Estudos de Associação Genética , Humanos , Mutação , Fenótipo , Prognóstico
2.
J Cardiovasc Dev Dis ; 7(4)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212844

RESUMO

The clinical efficacy of neuregulin (NRG) in the treatment of heart failure is hindered by off-target exposure due to systemic delivery. We previously encapsulated neuregulin in a hydrogel (HG) for targeted and sustained myocardial delivery, demonstrating significant induction of cardiomyocyte proliferation and preservation of post-infarct cardiac function in a murine myocardial infarction (MI) model. Here, we performed a focused evaluation of our hydrogel-encapsulated neuregulin (NRG-HG) therapy's potential to enhance cardiac function in an ovine large animal MI model. Adult male Dorset sheep (n = 21) underwent surgical induction of MI by coronary artery ligation. The sheep were randomized to receive an intramyocardial injection of saline, HG only, NRG only, or NRG-HG circumferentially around the infarct borderzone. Eight weeks after MI, closed-chest intracardiac pressure-volume hemodynamics were assessed, followed by heart explant for infarct size analysis. Compared to each of the control groups, NRG-HG significantly augmented left ventricular ejection fraction (p = 0.006) and contractility based on the slope of the end-systolic pressure-volume relationship (p = 0.006). NRG-HG also significantly reduced infarct scar size (p = 0.002). Overall, using a bioengineered hydrogel delivery system, a one-time dose of NRG delivered intramyocardially to the infarct borderzone at the time of MI in adult sheep significantly reduces scar size and enhances ventricular contractility at 8 weeks after MI.

3.
Ann Cardiothorac Surg ; 4(3): 220-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26309823

RESUMO

BACKGROUND: Discordance between studies drives continued debate regarding the best management of asymptomatic severe mitral regurgitation (MR). The aim of the present study was to conduct a systematic review and meta-analysis of management plans for asymptomatic severe MR, and compare the effectiveness of a strategy of early surgery to watchful waiting. METHODS: A systematic review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. Studies were excluded if they: (I) lacked a watchful waiting cohort; (II) included symptomatic patients; or (III) included etiologies other than degenerative mitral valve disease. The primary outcome of the study was all-cause mortality at 10 years. Secondary outcomes included operative mortality, repair rate, repeat mitral valve surgery, and development of new atrial fibrillation. RESULTS: Five observational studies were eligible for review and three were included in the pooled analysis. In asymptomatic patients without class I triggers (symptoms or ventricular dysfunction), pooled analysis revealed a significant reduction in long-term mortality with an early surgery approach [hazard ratio (HR) =0.38; 95% confidence interval (CI): 0.21-0.71]. This survival benefit persisted in a sub-group analysis limited to patients without class II triggers (atrial fibrillation or pulmonary hypertension) [relative risk (RR) =0.85; 95% CI: 0.75-0.98]. Aggregate rates of operative mortality did not differ between treatment arms (0.7% vs. 0.7% for early surgery vs. watchful waiting). However, significantly higher repair rates were achieved in the early surgery cohorts (RR =1.10; 95% CI: 1.02-1.18). CONCLUSIONS: Despite disagreement between individual studies, the present meta-analysis demonstrates that a strategy of early surgery may improve survival and increase the likelihood of mitral valve repair compared with watchful waiting. Early surgery may also benefit patients when instituted prior to the development of class II triggers.

4.
Dev Cell ; 30(6): 688-700, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25241935

RESUMO

TRIM58 is an E3 ubiquitin ligase superfamily member implicated by genome-wide association studies to regulate human erythrocyte traits. Here, we show that Trim58 expression is induced during late erythropoiesis and that its depletion by small hairpin RNAs (shRNAs) inhibits the maturation of late-stage nucleated erythroblasts to anucleate reticulocytes. Imaging flow cytometry studies demonstrate that Trim58 regulates polarization and/or extrusion of erythroblast nuclei. In vitro, Trim58 directly binds and ubiquitinates the intermediate chain of the microtubule motor dynein. In cells, Trim58 stimulates proteasome-dependent degradation of the dynein holoprotein complex. During erythropoiesis, Trim58 expression, dynein loss, and enucleation occur concomitantly, and all are inhibited by Trim58 shRNAs. Dynein regulates nuclear positioning and microtubule organization, both of which undergo dramatic changes during erythroblast enucleation. Thus, we propose that Trim58 promotes this process by eliminating dynein. Our findings identify an erythroid-specific regulator of enucleation and elucidate a previously unrecognized mechanism for controlling dynein activity.


Assuntos
Dineínas/metabolismo , Eritroblastos/metabolismo , Eritropoese , Ubiquitina-Proteína Ligases/metabolismo , Animais , Eritroblastos/citologia , Camundongos , Ligação Proteica , Reticulócitos/citologia , Reticulócitos/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
5.
Blood ; 121(24): 4925-9, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23620576

RESUMO

Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm of young children initiated by mutations that deregulate cytokine receptor signaling. Studies of JMML are constrained by limited access to patient tissues. We generated induced pluripotent stem cells (iPSCs) from malignant cells of two JMML patients with somatic heterozygous p.E76K missense mutations in PTPN11, which encodes SHP-2, a nonreceptor tyrosine phosphatase. In vitro differentiation of JMML iPSCs produced myeloid cells with increased proliferative capacity, constitutive activation of granulocyte macrophage colony-stimulating factor (GM-CSF), and enhanced STAT5/ERK phosphorylation, similar to primary JMML cells from patients. Pharmacological inhibition of MEK kinase in iPSC-derived JMML cells reduced their GM-CSF independence, providing rationale for a potential targeted therapy. Our studies offer renewable sources of biologically relevant human cells in which to explore the pathophysiology and treatment of JMML. More generally, we illustrate the utility of iPSCs for in vitro modeling of a human malignancy.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Leucemia Mielomonocítica Juvenil/metabolismo , Mutação de Sentido Incorreto , Células-Tronco Neoplásicas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Estudos de Coortes , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/patologia , Masculino , Células-Tronco Neoplásicas/patologia , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...