Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8788, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627456

RESUMO

Infections caused by multidrug-resistant Streptococcus pneumoniae remain the leading cause of pneumonia-related deaths in children < 5 years globally, and mutations in penicillin-binding protein (PBP) 2 × have been identified as the major cause of resistance in the organism to beta-lactams. Thus, the development of new modulators with enhanced binding of PBP2x is highly encouraged. In this study, phenolics, due to their reported antibacterial activities, were screened against the active site of PBP2x using structure-based pharmacophore and molecular docking techniques, and the ability of the top-hit phenolics to inhibit the active and allosteric sites of PBP2x was refined through 120 ns molecular dynamic simulation. Except for gallocatechin gallate and lysidicichin, respectively, at the active and allosteric sites of PBP2x, the top-hit phenolics had higher negative binding free energy (ΔGbind) than amoxicillin [active site (- 19.23 kcal/mol), allosteric site (- 33.75 kcal/mol)]. Although silicristin had the best broad-spectrum effects at the active (- 38.41 kcal/mol) and allosteric (- 50.54 kcal/mol) sites of PBP2x, the high thermodynamic entropy (4.90 Å) of the resulting complex might suggest the need for its possible structural refinement for enhanced potency. Interestingly, silicristin had a predicted synthetic feasibility score of < 5 and quantum calculations using the DFT B3LYP/6-31G+ (dp) revealed that silicristin is less stable and more reactive than amoxicillin. These findings point to the possible benefits of the top-hit phenolics, and most especially silicristin, in the direct and synergistic treatment of infections caused by S. pneumoniae. Accordingly, silicristin is currently the subject of further confirmatory in vitro research.


Assuntos
Amoxicilina , Streptococcus pneumoniae , Criança , Humanos , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Streptococcus pneumoniae/genética , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Amoxicilina/farmacologia , Resistência às Penicilinas/genética , Proteínas de Bactérias/metabolismo
2.
J Biomol Struct Dyn ; 42(1): 298-313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36974951

RESUMO

Antibacterial resistance to ß-lactams in microorganisms has been attributed majorly to alterations in penicillin-binding proteins (PBPs) coupled with ß-lactams' inactivation by ß-lactamase. Consequently, the identification of a novel class of therapeutics with improved modulatory action on the PBPs is imperative and plant secondary metabolites, including phenolics, have found relevance in this regard. For the first time in this study, the over 10,000 phenolics currently known were computationally evaluated against PBP3 of Pseudomonas aeruginosa, a superbug implicated in several nosocomial infections. In doing this, a library of phenolics with an affinity for PBP3 of P. aeruginosa was screened using structure-activity relationship-based pharmacophore and molecular docking approaches. Subsequent thermodynamic screening of the top five phenolics with higher docking scores, more drug-likeness attributes, and feasible synthetic accessibility was achieved through a 120 ns molecular dynamic (MD) simulation. Four of the top five hits had higher binding free energy than cefotaxime (-18.72 kcal/mol), with catechin-3-rhamside having the highest affinity (-28.99 kcal/mol). All the hits were stable at the active site of the PBP3, with catechin-3-rhamside being the most stable (2.14 Å), and established important interactions with Ser294, implicated in the catalytic activity of PBP3. Also, PBP3 became more compact with less fluctuation of the active site amino acid residues following the binding of the hits. These observations are indicative of the potential of the test compounds as PBP3 inhibitors, with catechin-3-rhamside being the most prominent of the compounds that could be further improved for enhanced druggability against PBP3 in vitro and in vivo.Communicated by Ramaswamy H. Sarma.


Assuntos
Catequina , Pseudomonas aeruginosa , Proteínas de Ligação às Penicilinas/química , Pseudomonas aeruginosa/metabolismo , Simulação de Acoplamento Molecular , Quimioinformática , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamas/farmacologia , beta-Lactamas/química , beta-Lactamas/metabolismo
3.
Sci Rep ; 13(1): 15505, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726386

RESUMO

An opportunistic human pathogenic bacterium, Chromobacterium violaceum resists the potency of most antibiotics by exploiting the quorum sensing system within their community to control virulence factor expression. Therefore, blocking the quorum sensing mechanism could help to treat several infectious caused by this organism. The quorum sensing receptor (CviR) of C. violaceum was used as a model target in the current investigation to identify potentially novel quorum sensing inhibitors from Cladosporium spp. through in silico computational approaches. The molecular docking results confirmed the anti-quorum sensing potential of bioactive compounds from Cladosporium spp. through binding to CviR with varying docking scores between - 5.2 and - 9.5 kcal/mol. Relative to the positive control [Azithromycin (- 7.4 kcal/mol)], the top six metabolites of Cladosporium spp. had higher docking scores and were generally greater than - 8.5 kcal/mol. The thermodynamic stability and binding affinity refinement of top-ranked CviR inhibitors were further studied through a 160 ns molecular dynamic (MD) simulation. The Post-MD simulation analysis confirmed the top-ranked compounds' affinity, stability, and biomolecular interactions with CviR at 50 ns, 100 ns, and 160 ns with Coniochaetone K of the Cladosporium spp. having the highest binding free energy (- 30.87 kcal/mol) and best interactions (two consistent hydrogen bond contact) following the 160 ns simulation. The predicted pharmacokinetics properties of top selected compounds point to their drug likeliness, potentiating their chance as a possible drug candidate. Overall, the top-ranked compounds from Cladosporium spp., especially Coniochaetone K, could be identified as potential C. violaceum CviR inhibitors. The development of these compounds as broad-spectrum antibacterial medicines is thus possible in the future following the completion of further preclinical and clinical research.


Assuntos
Cladosporium , Percepção de Quorum , Humanos , Simulação de Acoplamento Molecular , Antibacterianos , Simulação de Dinâmica Molecular
4.
Antibiotics (Basel) ; 12(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36978371

RESUMO

Clinically significant pathogens such as Pseudomonas aeruginosa evade the effects of antibiotics using quorum sensing (QS) systems, making antimicrobial resistance (AMR) a persistent and potentially fatal global health issue. Hence, QS has been identified as a novel therapeutic target for identifying novel drug candidates against P. aeruginosa, and plant-derived products, including essential oils, have been demonstrated as effective QS modulators. This study assessed the antipathogenic efficacy of essential oils from two sunflower cultivars (AGSUN 5102 CLP and AGSUN 5106 CLP) against P. aeruginosa ATCC 27853 in vitro and in silico. At the sub-inhibitory concentrations, both AGSUN 5102 CLP (62.61%) and AGSUN 5106 CLP (59.23%) competed favorably with cinnamaldehyde (60.74%) and azithromycin (65.15%) in suppressing the expression of QS-controlled virulence phenotypes and biofilm formation in P. aeruginosa. A further probe into the mechanism of anti-QS action of the oils over a 100-ns simulation period against Las QS system revealed that phylloquinone (-66.42 ± 4.63 kcal/mol), linoleic acid (-53.14 ± 3.53 kcal/mol), and oleic acid (-52.02 ± 3.91 kcal/mol) had the best affinity and structural compactness as potential modulators of LasR compared to cinnamaldehyde (-16.95 ± 1.75 kcal/mol) and azithromycin (-32.08 ± 10.54 kcal/mol). These results suggest that the identified compounds, especially phylloquinone, could be a possible LasR modulator and may represent a novel therapeutic alternative against infections caused by P. aeruginosa. As a result, phylloquinone could be further studied as a QS modulator and perhaps find utility in developing new therapeutics.

5.
Biomolecules ; 12(11)2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36358894

RESUMO

Antibiotic resistance in bacteria has remained a serious public health concern, resulting in substantial deaths and morbidity each year. Factors such as mutation and abuse of currently available antibiotics have contributed to the bulk of the menace. Hence, the introduction and implementation of new therapeutic strategies are imperative. Of these strategies, data supporting the role of reactive oxygen species (ROS) in bacterial lethality are intriguing, with several antimicrobials, including antibiotics such as fluoroquinolones, ß-lactams, and aminoglycosides, as well as natural plant compounds, being remarkably implicated. Following treatment with ROS-inducing antimicrobials, ROS such as O2•-, •OH, and H2O2 generated in bacteria, which the organism is unable to detoxify, damage cellular macromolecules such as proteins, lipids, and nucleic acids and results in cell death. Despite the unique mechanism of action of ROS-inducing antibacterials and significant studies on ROS-mediated means of bacterial killing, the field remains a topical one, with contradicting viewpoints that require frequent review. Here, we appraised the antibacterial agents (antibiotics, natural and synthetic compounds) implicated in ROS generation and the safety concerns associated with their usage. Further, background information on the sources and types of ROS in bacteria, the mechanism of bacterial lethality via oxidative stress, as well as viewpoints on the ROS hypothesis undermining and solidifying this concept are discussed.


Assuntos
Anti-Infecciosos , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Oxirredução , Estresse Oxidativo , Anti-Infecciosos/metabolismo
6.
Metabolites ; 12(10)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36295839

RESUMO

Recently, dipeptidyl peptidase-IV (DPP-IV) has become an effective target in the management of type-2 diabetes mellitus (T2D). The study aimed to determine the efficacy of shikimate pathway-derived phenolic acids as potential DPP-IV modulators in the management of T2D. The study explored in silico (molecular docking and dynamics simulations) and in vitro (DPP-IV inhibitory and kinetics assays) approaches. Molecular docking findings revealed chlorogenic acid (CA) among the examined 22 phenolic acids with the highest negative binding energy (-9.0 kcal/mol) showing a greater affinity for DPP-IV relative to the standard, Diprotin A (-6.6 kcal/mol). The result was corroborated by MD simulation where it had a higher affinity (-27.58 kcal/mol) forming a more stable complex with DPP-IV than Diprotin A (-12.68 kcal/mol). These findings were consistent with in vitro investigation where it uncompetitively inhibited DPP-IV having a lower IC50 (0.3 mg/mL) compared to Diprotin A (0.5 mg/mL). While CA showed promising results as a DPP-IV inhibitor, the findings from the study highlighted the significance of medicinal plants particularly shikimate-derived phenolic compounds as potential alternatives to synthetic drugs in the effective management of T2DM. Further studies, such as derivatisation for enhanced activity and in vivo evaluation are suggested to realize its full potential in T2D therapy.

7.
Metabolites ; 12(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36295884

RESUMO

The spike protein (SP) of SARS-CoV-2 (SC-2) is susceptible to high mutation and has contributed to the multiple waves of COVID-19 being experienced. Hence, targeting the SP remains a logical approach in the development of potent therapeutics against SARS-CoV-2. Here, a computational technique was adopted to identify broad-spectrum plant secondary metabolites with indigenous relevance in the management of respiratory infections against the SPs of the SC-2 wild- type (SC-2WT) and omicron variants. Following 100 ns molecular dynamic (MD) simulation and binding free energy calculation of the top five compounds identified through molecular docking, maysin (SC-2WT (-34.85 kcal/mol), omicron (-38.88 kcal/mol)) and geraniin (SC-2WT (-36.90 kcal/mol) omicron (-31.28 kcal/mol)) had better broad-spectrum activities for the investigated SPs than zafirlukast (SC-2WT (-33.73 kcal/mol) omicron (-22.38 kcal/mol)). Furthermore, 6-hydroxycyanidin-3-rutinoside (-42.97 kcal/mol) and kaempferol-7-glucoside (-37.11 kcal/mol) had the best affinity for the SPs of omicron and SC-2WT, respectively. Interestingly, except for Kaempferol-7-glucoside against omicron SP, all the top-ranked compounds were thermodynamically stable with the SP of both variants, and this observation was linked to the number, nature, and bond length in the resulting complexes in each case. Also, except for geraniin, all the top-ranked compounds had lower toxicity profiles compared to zafirlukast and this could be attributed to their phenolic moieties. Nevertheless, the in vitro and in vivo confirmation of the activities observed in this study is recommended, especially for maysin and geraniin with the best broad-spectrum activity, towards development of COVID-19 drug candidates.

8.
Pharmaceutics ; 14(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36145565

RESUMO

The acquisition of penicillin-binding protein (PBP) 2a in resistant strains of Staphylococcus aureus allows for the continuous production of cell walls even after the inactivation of intrinsic PBPs. Thus, the discovery of novel therapeutics with enhanced modulatory activity on PBP2a is crucial, and plant secondary metabolites, such as phenolics, have found relevance in this regard. In this study, using computational techniques, phenolics were screened against the active site of PBP2a, and the ability of the lead phenolics to modulate PBP2a's active and allosteric sites was studied. The top-five phenolics (leads) identified through structure-activity-based screening, pharmacokinetics and synthetic feasibility evaluations were subjected to molecular dynamics simulations. Except for propan-2-one at the active site, the leads had a higher binding free energy at both the active and allosteric sites of PBP2a than amoxicillin. The leads, while promoting the thermodynamic stability of PBP2a, showed a more promising affinity at the allosteric site than the active site, with silicristin (-25.61 kcal/mol) and epicatechin gallate (-47.65 kcal/mol) having the best affinity at the active and allosteric sites, respectively. Interestingly, the modulation of Tyr446, the active site gatekeeper residue in PBP2a, was noted to correlate with the affinity of the leads at the allosteric site. Overall, these observations point to the leads' ability to inhibit PBP2a, either directly or through allosteric modulation with conventional drugs. Further confirmatory in vitro studies on the leads are underway.

9.
Comput Biol Med ; 145: 105432, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35344868

RESUMO

The potential of fluoroquinolones as remarkable antibacterial agents evolved from their ability to generate 'poison' complexes between type IIA topoisomerases [topo2As (DNA gyrases and topoisomerases IV)] and DNA. However, the overuse of fluoroquinolones coupled with chromosomal mutations in topo2As has increased incidence of resistance and consequently undermined the application of the currently available fluoroquinolones in clinical practice. In this study, the molecular mechanism of interaction between the secondary metabolites of Crescentia cujete (an underutilized plant with proven anti-bacterial activity) and topo2As was investigated using computational methods. Through molecular docking, the top five compounds with the best affinity for each topo2A were identified and subjected to molecular dynamics simulation over a period of 100 ns. The results revealed that the identified compounds had higher binding energy values than the reference standards against the topo2As except for topoisomerase IV ParC, and this was consistent with the results of the structural stability and compactness of the resulting complexes. Specifically, cistanoside D (-49.18 kcal/mol), chlorogenic acid (-55.55 kcal/mol), xylocaine (-33.08 kcal/mol), and naringenin (-35.48 kcal/mol) had the best affinity for DNA gyrase A, DNA gyrase B, topoisomerase IV ParC, and topoisomerase IV ParE, respectively. Of the constituents of C. cujete evaluated, only apigenin and luteolin had affinity for all the four targets. These observations are indicative of the identified compounds as potential inhibitors of topo2As as evidenced from the molecular interactions including hydrogen bonds established with the active site amino acids of the respective targets. This is the first in silico report on the antibacterial effect of C. cujete and the findings would guide structural modification of the identified compounds as novel inhibitors of topo2As for further in vitro and in vivo assessments.


Assuntos
DNA Girase , DNA Topoisomerase IV , DNA Topoisomerases Tipo II/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , DNA Girase/química , DNA Girase/genética , DNA Girase/metabolismo , DNA Topoisomerase IV/metabolismo , Fluoroquinolonas/química , Fluoroquinolonas/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
10.
Oxid Med Cell Longev ; 2021: 7159652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925700

RESUMO

The involvement of cellular oxidative stress in antibacterial therapy has remained a topical issue over the years. In this study, the contribution of oxidative stress to astaxanthin-mediated bacterial lethality was evaluated in silico and in vitro. For the in vitro analysis, the minimum inhibitory concentration (MIC) of astaxanthin was lower than that of novobiocin against Staphylococcus aureus but generally higher than those of the reference antibiotics against other test organisms. The level of superoxide anion of the tested organisms increased significantly following treatment with astaxanthin when compared with DMSO-treated cells. This increase compared favorably with those observed with the reference antibiotics and was consistent with a decrease in the concentration of glutathione (GSH) and corresponding significant increase in ADP/ATP ratio. These observations are suggestive of probable involvement of oxidative stress in antibacterial capability of astaxanthin and in agreement with the results of the in silico evaluations, where the free energy scores of astaxanthins' complexes with topoisomerase IV ParC and ParE were higher than those of the reference antibiotics. These observations were consistent with the structural stability and compactness of the complexes as astaxanthin was observed to be more stable against topoisomerase IV ParC and ParE than DNA Gyrase A and B. Put together, findings from this study underscored the nature and mechanism of antibacterial action of astaxanthin that could suggest practical approaches in enhancing our current knowledge of antibacterial arsenal and aid in the novel development of alternative natural topo2A inhibitor.


Assuntos
Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Simulação de Dinâmica Molecular , Estresse Oxidativo , Antibacterianos/química , Bactérias/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Xantofilas/química , Xantofilas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...