Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Genom Med ; 8(1): 37, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925498

RESUMO

Epidemiological studies suggest that individuals with neurodevelopmental disorders (NDDs) are more prone to develop certain types of cancer. Notably, however, the case statistics can be impacted by late discovery of cancer in individuals afflicted with NDDs, such as intellectual disorders, autism, and schizophrenia, which may bias the numbers. As to NDD-associated mutations, in most cases, they are germline while cancer mutations are sporadic, emerging during life. However, somatic mosaicism can spur NDDs, and cancer-related mutations can be germline. NDDs and cancer share proteins, pathways, and mutations. Here we ask (i) exactly which features they share, and (ii) how, despite their commonalities, they differ in clinical outcomes. To tackle these questions, we employed a statistical framework followed by network analysis. Our thorough exploration of the mutations, reconstructed disease-specific networks, pathways, and transcriptome levels and profiles of autism spectrum disorder (ASD) and cancers, point to signaling strength as the key factor: strong signaling promotes cell proliferation in cancer, and weaker (moderate) signaling impacts differentiation in ASD. Thus, we suggest that signaling strength, not activating mutations, can decide clinical outcome.

2.
Biophys Rev ; 15(2): 163-181, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124926

RESUMO

Neurodevelopmental disorders (NDDs) and cancer share proteins, pathways, and mutations. Their clinical symptoms are different. However, individuals with NDDs have higher probabilities of eventually developing cancer. Here, we review the literature and ask how the shared features can lead to different medical conditions and why having an NDD first can increase the chances of malignancy. To explore these vital questions, we focus on dysregulated PI3K/mTOR, a major brain cell growth pathway in differentiation, and MAPK, a critical pathway in proliferation, a hallmark of cancer. Differentiation is governed by chromatin organization, making aberrant chromatin remodelers highly likely agents in NDDs. Dysregulated chromatin organization and accessibility influence the lineage of specific cell brain types at specific embryonic development stages. PAK1, with pivotal roles in brain development and in cancer, also regulates MAPK. We review, clarify, and connect dysregulated pathways with dysregulated proliferation and differentiation in cancer and NDDs and highlight PAK1 role in brain development and MAPK regulation. Exactly how PAK1 activation controls brain development, and why specific chromatin remodeler components, e.g., BAF170 encoded by SMARCC2 in autism, await clarification.

3.
Front Mol Biosci ; 8: 666705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34676243

RESUMO

Beyond the list of molecules, there is a necessity to collectively consider multiple sets of omic data and to reconstruct the connections between the molecules. Especially, pathway reconstruction is crucial to understanding disease biology because abnormal cellular signaling may be pathological. The main challenge is how to integrate the data together in an accurate way. In this study, we aim to comparatively analyze the performance of a set of network reconstruction algorithms on multiple reference interactomes. We first explored several human protein interactomes, including PathwayCommons, OmniPath, HIPPIE, iRefWeb, STRING, and ConsensusPathDB. The comparison is based on the coverage of each interactome in terms of cancer driver proteins, structural information of protein interactions, and the bias toward well-studied proteins. We next used these interactomes to evaluate the performance of network reconstruction algorithms including all-pair shortest path, heat diffusion with flux, personalized PageRank with flux, and prize-collecting Steiner forest (PCSF) approaches. Each approach has its own merits and weaknesses. Among them, PCSF had the most balanced performance in terms of precision and recall scores when 28 pathways from NetPath were reconstructed using the listed algorithms. Additionally, the reference interactome affects the performance of the network reconstruction approaches. The coverage and disease- or tissue-specificity of each interactome may vary, which may result in differences in the reconstructed networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...