Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432887

RESUMO

Flavonoids are characterized as the low molecular weight polyphenolic compounds universally distributed in planta. They are a chemically varied group of secondary metabolites with a broad range of biological activity. The increasing amount of evidence has demonstrated the various physiological functions of flavonoids in stress response. In this paper, we provide a brief introduction to flavonoids' biochemistry and biosynthesis. Then, we review the recent findings on the alternation of flavonoid content under different stress conditions to come up with an overall picture of the mechanism of involvement of flavonoids in plants' response to various abiotic stresses. The participation of flavonoids in antioxidant systems, flavonoid-mediated response to different abiotic stresses, the involvement of flavonoids in stress signaling networks, and the physiological response of plants under stress conditions are discussed in this review. Moreover, molecular and genetic approaches to tailoring flavonoid biosynthesis and regulation under abiotic stress are addressed in this review.

2.
Plants (Basel) ; 11(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35161297

RESUMO

In agriculture, abiotic stress is one of the critical issues impacting the crop productivity and yield. Such stress factors lead to the generation of reactive oxygen species, membrane damage, and other plant metabolic activities. To neutralize the harmful effects of abiotic stress, several strategies have been employed that include the utilization of nanomaterials. Nanomaterials are now gaining attention worldwide to protect plant growth against abiotic stresses such as drought, salinity, heavy metals, extreme temperatures, flooding, etc. However, their behavior is significantly impacted by the dose in which they are being used in agriculture. Furthermore, the action of nanomaterials in plants under various stresses still require understanding. Hence, with this background, the present review envisages to highlight beneficial role of nanomaterials in plants, their mode of action, and their mechanism in overcoming various abiotic stresses. It also emphasizes upon antioxidant activities of different nanomaterials and their dose-dependent variability in plants' growth under stress. Nevertheless, limitations of using nanomaterials in agriculture are also presented in this review.

3.
Physiol Plant ; 173(4): 2262-2275, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34590723

RESUMO

The action of nanoparticles is increasingly being studied in recent years to minimize their toxic impacts. Besides this, efforts are also being made to minimize their toxicity in crop plants by using various chemicals, i.e. nutrients, donors of signaling molecules, plant hormones, and so on. However, associated alleviatory mechanisms are still not well known. Therefore, in the present study, we have investigated the toxicity of CuONPs and its mitigation by exogenously applied calcium (Ca). The focus was on whether indole-3-acetic acid (IAA) or endogenous nitric oxide (NO) has any role in accomplishing this task. CuONPs declined wheat growth due to increased accumulation of Cu and oxidative stress markers such as superoxide radicals, hydrogen peroxide, and lipid peroxidation (malondialdehyde) and it was also accompanied by a decline in endogenous NO. CuONPs also altered the redox status of ascorbate and glutathione by inhibiting the activity of their regenerating enzymes. This collectively leads to cell death in wheat seedlings. However, exogenous supplementation of Ca mitigated toxic effects of CuONPs by reducing the excess accumulation of Cu, which caused remarkable enhancement in growth, protein contents, photosynthetic pigments, and endogenous NO; altogether protecting wheat roots from cell death. Interestingly, addition of 2,3,5-triiodobenzoic acid (TIBA) further increased CuONPs toxicity even in the presence of Ca, but the addition of IAA rescued this effect of TIBA. These results clearly show that Ca mitigates CuONPs toxicity in wheat seedlings by involving IAA. Further, the results also showed that endogenous NO has a positive and indispensable role in Ca-mediated mitigation of CuONPs toxicity in wheat seedlings.


Assuntos
Nanopartículas , Plântula , Antioxidantes , Cálcio , Cobre/toxicidade , Peróxido de Hidrogênio , Ácidos Indolacéticos , Óxido Nítrico , Estresse Oxidativo , Triticum
4.
Toxicol Res (Camb) ; 10(2): 214-222, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33884172

RESUMO

The dipotassium phosphate (K2HPO4) is a source of phosphorus (P), which is an essential micronutrient for plant growth and reproduction and also acts as a stress alleviator against abiotic stresses. Therefore, it could also become a potential mineral to cope up with zinc oxide nanoparticles' (ZnONPs) toxicity in crops. This study primarily includes synthesis, characterization and differential toxic impacts of ZnONPs on two crop plantsThis study includes synthesis, characterization and differential toxic impacts of ZnONPs on two crop plants, i.e. Triticum aestivum and Solanum lycopersicum, as well as assuage the toxic impacts of ZnONPs through nutrient management approach implied via supplementation of P. The growth and physiological changes under toxic doses of ZnONPs and ameliorative potential of P in crop plants were examined by analysing growth, intracellular Zn accumulation, photosynthetic pigment contents, the kinetics of photosystem II (PS II) photochemistry, root cell anatomy and cell viability via histochemical staining 4',6-diamidino-2-phenylindole and propidium iodide. ZnONPs at 500 and 1000 µM concentrations significantly affected the growth, photosynthetic pigment and PS II photochemistry and cell death in both the plants. It also caused deformation in root anatomy of T. aestivum and S. lycopersicum. Whereas supplementation of P caused significant improvement against ZnONPs stress by causing remarkable enhancement in growth, photosynthetic pigments and activity of PS II photochemistry and decreased cell death. Moreover, the study also discloses the tolerant nature of S. lycopersicum comparing with T. aestivum seedlings. Thus, P is comparatively more effective in managing the ZnONPs toxicity in S. lycopersicum than in T. aestivum.

5.
Crit Rev Biotechnol ; 41(5): 715-730, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33866893

RESUMO

Aluminum (Al) precipitates in acidic soils having a pH < 5.5, in the form of conjugated organic and inorganic ions. Al-containing minerals solubilized in the soil solution cause several negative impacts in plants when taken up along with other nutrients. Moreover, a micromolar concentration of Al present in the soil is enough to induce several irreversible toxicity symptoms such as the rapid and transient over-generation of reactive oxygen species (ROS) such as superoxide anion (O2•-), hydrogen peroxide (H2O2), and hydroxyl radical (•OH), resulting in oxidative bursts. In addition, significant reductions in water and nutrient uptake occur which imposes severe stress in the plants. However, some plants have developed Al-tolerance by stimulating the secretion of organic acids like citrate, malate, and oxalate, from plant roots. Genes responsible for encoding such organic acids, play a critical role in Al tolerance. Several transporters involved in Al resistance mechanisms are members of the Aluminum-activated Malate Transporter (ALMT), Multidrug and Toxic compound Extrusion (MATE), ATP-Binding Cassette (ABC), Natural resistance-associated macrophage protein (Nramp), and aquaporin gene families. Therefore, in the present review, the discussion of the global extension and probable cause of Al in the environment and mechanisms of Al toxicity in plants are followed by detailed emphasis on tolerance mechanisms. We have also identified and categorized the important transporters that secrete organic acids and outlined their role in Al stress tolerance mechanisms in crop plants. The information provided here will be helpful for efficient exploration of the available knowledge to develop Al tolerant crop varieties.


Assuntos
Alumínio , Peróxido de Hidrogênio , Alumínio/metabolismo , Alumínio/toxicidade , Regulação da Expressão Gênica de Plantas , Humanos , Raízes de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Solo
6.
Plant Cell Physiol ; 62(10): 1509-1527, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33594421

RESUMO

Histochemistry is an essential analytical tool interfacing extensively with plant science. The literature is indeed constellated with examples showing its use to decipher specific physiological and developmental processes, as well as to study plant cell structures. Plant cell structures are translucent unless they are stained. Histochemistry allows the identification and localization, at the cellular level, of biomolecules and organelles in different types of cells and tissues, based on the use of specific staining reactions and imaging. Histochemical techniques are also widely used for the in vivo localization of promoters in specific tissues, as well as to identify specific cell wall components such as lignin and polysaccharides. Histochemistry also enables the study of plant reactions to environmental constraints, e.g. the production of reactive oxygen species (ROS) can be traced by applying histochemical staining techniques. The possibility of detecting ROS and localizing them at the cellular level is vital in establishing the mechanisms involved in the sensitivity and tolerance to different stress conditions in plants. This review comprehensively highlights the additional value of histochemistry as a complementary technique to high-throughput approaches for the study of the plant response to environmental constraints. Moreover, here we have provided an extensive survey of the available plant histochemical staining methods used for the localization of metals, minerals, secondary metabolites, cell wall components, and the detection of ROS production in plant cells. The use of recent technological advances like CRISPR/Cas9-based genome-editing for histological application is also addressed. This review also surveys the available literature data on histochemical techniques used to study the response of plants to abiotic stresses and to identify the effects at the tissue and cell levels.


Assuntos
Botânica/métodos , Ensaios de Triagem em Larga Escala , Biologia Molecular/métodos , Fenômenos Fisiológicos Vegetais , Estresse Fisiológico , Meio Ambiente
7.
Plant Physiol Biochem ; 159: 100-112, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33359959

RESUMO

At the dawn of the industrial revolution, the exorbitant use of heavy metals and toxic elements by mankind unfurls a powerful and complex web of hazard all around the world that significantly contributed to unprecedented trends in environmental degradation. Plants as sessile organisms, that cannot escape from the stress directly, have adapted to this environment via concurrent configurations of several traits. Among them the anatomy has been identified as much more advanced field of research that brought the explosion of interest among the expertise and its prodigious importance in stress physiology is unavoidable. In conjunction with various other disciplines, like physiology, biochemistry, genomics and metabolomics, the plant anatomy provides a large data sets that are paving the way towards a comprehensive and holistic understanding of plant growth, development, defense and productivity under heavy metal and toxic element stress. Present paper advances our recent knowledge about structural alterations of plant tissues induced by metals and metalloids, like antimony (Sb), arsenic (As), aluminium (Al), copper (Cu), cadmium (Cd), chromium (Cr), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni) and zinc (Zn) and points on essential role of plant anatomy and its understanding for plant growth and development in changing environment. Understanding of anatomical adaptations of various plant organs and tissues to heavy metals and metalloids could greatly contribute to integral and modern approach for investigation of plants in changing environmental conditions. These findings are necessary for understanding of the whole spectra of physiological and biochemical reactions in plants and to maintain the crop productivity worldwide. Moreover, our holistic perception regarding the processes underlying the plant responses to metal(loids) at anatomical level are needed for improving crop management and breeding techniques.


Assuntos
Exposição Ambiental , Metaloides , Metais Pesados , Plantas , Metaloides/toxicidade , Metais Pesados/toxicidade , Organogênese Vegetal/efeitos dos fármacos , Plantas/anatomia & histologia , Plantas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...