Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Genet Eng Biotechnol ; 22(1): 100342, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494245

RESUMO

BACKGROUND: Human papillomavirus (HPV) vaccination is one of the crucial national vaccination programs aimed at reducing the prevalence of the diseases associated with HPV infections, which continue to pose a global health concern. However, a significant disparity exists in the distribution of HPV vaccine, particularly in low-middle income countries where the cost of HPV vaccine becomes a major obstacle. Thus, it is essential to ensure the availability of an economically feasible HPV vaccine, necessitating immediate efforts to enhance the cost-effectiveness of vaccine production. This study aimed to develop an efficient production system for the recombinant HPV type 52 L1 protein as HPV vaccine material using methylotrophic yeast Hansenula polymorpha expression system. RESULTS: This study presents an in-depth examination of the expression and scale-up production of HPV type 52 L1 protein using DASGIP® parallel bioreactor system. The pHIPX4 plasmid, which is regulated by the MOX promoter, generates stable clones that express the target protein. Cultivation employing the synthetic medium SYN6(10) with controlled parameters (e.g. temperature, pH, feeding strategy, and aeration) produces 0.15 µg/mL of HPV type 52 L1 protein, suggesting a possibility for scaling up to a higher production level. CONCLUSION: The scale-up production of HPV type 52 L1 protein using Hansenula polymorpha expression system described in this study provides an opportunity for an economical manufacturing platform for the development of the HPV vaccine.

2.
J Genet Eng Biotechnol ; 21(1): 68, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37222880

RESUMO

BACKGROUND: Vaccination is the one of the agendas of many countries to reduce cervical cancer caused by the Human papillomavirus. Currently, VLP-based vaccine is the most potent vaccine against HPV, which could be produced by a variety of expression systems. Our study focuses on a comparison of recombinant protein expression L1 HPV52 using two common yeasts, Pichia pastoris and Hansenula polymorpha that have been used for vaccine production on an industrial scale. We also applied bioinformatics approach using reverse vaccinology to design alternative multi-epitope vaccines in recombinant protein and mRNA types. RESULTS: Our study found that P. pastoris relatively provided higher level of L1 protein expression and production efficiency compared to H. polymorpha in a batch system. However, both hosts showed self-assembly VLP formation and stable integration during protein induction. The vaccine we have designed exhibited high immune activation and safe in computational prediction. It is also potentially suitable for production in a variety of expression systems. CONCLUSION: By monitoring the overall optimization parameter assessment, this study can be used as the basis reference for large-scale production of the HPV52 vaccine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...