Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37398408

RESUMO

Background: Understanding the genetic mechanisms underlying diseases in ancestrally diverse populations is a critical step towards the realization of the global application of precision medicine. The African and African admixed populations enable mapping of complex traits given their greater levels of genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. Methods: Here we perform a comprehensive genome-wide assessment of Parkinson's disease (PD) in 197,918 individuals (1,488 cases; 196,430 controls) of African and African admixed ancestry, characterizing population-specific risk, differential haplotype structure and admixture, coding and structural genetic variation and polygenic risk profiling. Findings: We identified a novel common risk factor for PD and age at onset at the GBA1 locus (risk, rs3115534-G; OR=1.58, 95% CI = 1.37 - 1.80, P=2.397E-14; age at onset, BETA =-2.004, SE =0.57, P = 0.0005), that was found to be rare in non-African/African admixed populations. Downstream short- and long-read whole genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. However, we identified that this signal mediates PD risk via expression quantitative trait locus (eQTL) mechanisms. While previously identified GBA1 associated disease risk variants are coding mutations, here we suggest a novel functional mechanism consistent with a trend in decreasing glucocerebrosidase activity levels. Given the high population frequency of the underlying signal and the phenotypic characteristics of the homozygous carriers, we hypothesize that this variant may not cause Gaucher disease. Additionally, the prevalence of Gaucher's disease in Africa is low. Interpretation: The present study identifies a novel African-ancestry genetic risk factor in GBA1 as a major mechanistic basis of PD in the African and African admixed populations. This striking result contrasts to previous work in Northern European populations, both in terms of mechanism and attributable risk. This finding highlights the importance of understanding population-specific genetic risk in complex diseases, a particularly crucial point as the field moves toward precision medicine in PD clinical trials and while recognizing the need for equitable inclusion of ancestrally diverse groups in such trials. Given the distinctive genetics of these underrepresented populations, their inclusion represents a valuable step towards insights into novel genetic determinants underlying PD etiology. This opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk. Evidence Before this Study: Our current understanding of Parkinson's disease (PD) is disproportionately based on studying populations of European ancestry, leading to a significant gap in our knowledge about the genetics, clinical characteristics, and pathophysiology in underrepresented populations. This is particularly notable in individuals of African and African admixed ancestries. Over the last two decades, we have witnessed a revolution in the research area of complex genetic diseases. In the PD field, large-scale genome-wide association studies in the European, Asian, and Latin American populations have identified multiple risk loci associated with disease. These include 78 loci and 90 independent signals associated with PD risk in the European population, nine replicated loci and two novel population-specific signals in the Asian population, and a total of 11 novel loci recently nominated through multi-ancestry GWAS efforts.Nevertheless, the African and African admixed populations remain completely unexplored in the context of PD genetics. Added Value of this Study: To address the lack of diversity in our research field, this study aimed to conduct the first genome-wide assessment of PD genetics in the African and African admixed populations. Here, we identified a genetic risk factor linked to PD etiology, dissected African-specific differences in risk and age at onset, characterized known genetic risk factors, and highlighted the utility of the African and African admixed risk haplotype substructure for future fine-mapping efforts. We identified a novel disease mechanism via expression changes consistent with decreased GBA1 activity levels. Future large scale single cell expression studies should investigate the neuronal populations in which expression differences are most prominent. This novel mechanism may hold promise for future efficient RNA-based therapeutic strategies such as antisense oligonucleotides or short interfering RNAs aimed at preventing and decreasing disease risk. We envisage that these data generated under the umbrella of the Global Parkinson's Genetics Program (GP2) will shed light on the molecular mechanisms involved in the disease process and might pave the way for future clinical trials and therapeutic interventions. This work represents a valuable resource in an underserved population, supporting pioneering research within GP2 and beyond. Deciphering causal and genetic risk factors in all these ancestries will help determine whether interventions, potential targets for disease modifying treatment, and prevention strategies that are being studied in the European populations are relevant to the African and African admixed populations. Implications of all the Available Evidence: We nominate a novel signal impacting GBA1 as the major genetic risk factor for PD in the African and African admixed populations. The present study could inform future GBA1 clinical trials, improving patient stratification. In this regard, genetic testing can help to design trials likely to provide meaningful and actionable answers. It is our hope that these findings may ultimately have clinical utility for this underrepresented population.

2.
medRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993627

RESUMO

Background: The microtubule-associated protein tau ( MAPT ) gene is critical because of its putative role in the causal pathway of neurodegenerative diseases including Parkinson's disease (PD). However, there is a lack of clarity regarding the link between the main H1 haplotype and risk of PD. Inconsistencies in reported association may be driven by genetic variability in the populations studied to date. Data on MAPT haplotype frequencies in the general population and association studies exploring the role of MAPT haplotypes in conferring PD risk in black Africans are lacking. Objectives: To determine the frequencies of MAPT haplotypes and explore the role of the H1 haplotype as a risk factor for PD risk and age at onset in Nigerian Africans. Methods: The haplotype and genotype frequencies of MAPT rs1052553 were analysed using PCR-based KASP™ in 907 individuals with PD and 1,022 age-matched neurologically normal controls from the Nigeria Parkinson's Disease Research (NPDR) network cohort. Clinical data related to PD included age at study, age at onset, and disease duration. Results: The frequency of the main MAPT H1 haplotype in this cohort was 98.7% in individuals with PD, and 99.1% in healthy controls (p=0.19). The H2 haplotype was present in 41/1929 (2.1%) of the cohort (PD - 1.3%; Controls - 0.9%; p=0.24). The most frequent MAPT genotype was H1H1 (PD - 97.5%, controls - 98.2%). The H1 haplotype was not associated with PD risk after accounting for gender and age at onset (Odds ratio for H1/H1 vs H1/H2 and H2/H2: 0.68 (95% CI:0.39-1.28); p=0.23). Conclusions: Our findings support previous studies that report a low frequency of the MAPT H2 haplotype in black ancestry Africans, but document its occurrence in the Nigerian population (2.1%). In this cohort of black Africans with PD, the MAPT H1 haplotype was not associated with an increased risk or age at onset of PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...