Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Database (Oxford) ; 20222022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197453

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has compelled biomedical researchers to communicate data in real time to establish more effective medical treatments and public health policies. Nontraditional sources such as preprint publications, i.e. articles not yet validated by peer review, have become crucial hubs for the dissemination of scientific results. Natural language processing (NLP) systems have been recently developed to extract and organize COVID-19 data in reasoning systems. Given this scenario, the BioCreative COVID-19 text mining tool interactive demonstration track was created to assess the landscape of the available tools and to gauge user interest, thereby providing a two-way communication channel between NLP system developers and potential end users. The goal was to inform system designers about the performance and usability of their products and to suggest new additional features. Considering the exploratory nature of this track, the call for participation solicited teams to apply for the track, based on their system's ability to perform COVID-19-related tasks and interest in receiving user feedback. We also recruited volunteer users to test systems. Seven teams registered systems for the track, and >30 individuals volunteered as test users; these volunteer users covered a broad range of specialties, including bench scientists, bioinformaticians and biocurators. The users, who had the option to participate anonymously, were provided with written and video documentation to familiarize themselves with the NLP tools and completed a survey to record their evaluation. Additional feedback was also provided by NLP system developers. The track was well received as shown by the overall positive feedback from the participating teams and the users. Database URL: https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-4/.


Assuntos
COVID-19 , COVID-19/epidemiologia , Mineração de Dados/métodos , Bases de Dados Factuais , Documentação , Humanos , Processamento de Linguagem Natural
2.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35849818

RESUMO

Automated relation extraction (RE) from biomedical literature is critical for many downstream text mining applications in both research and real-world settings. However, most existing benchmarking datasets for biomedical RE only focus on relations of a single type (e.g. protein-protein interactions) at the sentence level, greatly limiting the development of RE systems in biomedicine. In this work, we first review commonly used named entity recognition (NER) and RE datasets. Then, we present a first-of-its-kind biomedical relation extraction dataset (BioRED) with multiple entity types (e.g. gene/protein, disease, chemical) and relation pairs (e.g. gene-disease; chemical-chemical) at the document level, on a set of 600 PubMed abstracts. Furthermore, we label each relation as describing either a novel finding or previously known background knowledge, enabling automated algorithms to differentiate between novel and background information. We assess the utility of BioRED by benchmarking several existing state-of-the-art methods, including Bidirectional Encoder Representations from Transformers (BERT)-based models, on the NER and RE tasks. Our results show that while existing approaches can reach high performance on the NER task (F-score of 89.3%), there is much room for improvement for the RE task, especially when extracting novel relations (F-score of 47.7%). Our experiments also demonstrate that such a rich dataset can successfully facilitate the development of more accurate, efficient and robust RE systems for biomedicine. Availability: The BioRED dataset and annotation guidelines are freely available at https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/.


Assuntos
Algoritmos , Mineração de Dados , Proteínas , PubMed
3.
Bioinform Adv ; 2(1): vbac012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699359
4.
PLoS Biol ; 19(12): e3001464, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871295

RESUMO

The UniProt knowledgebase is a public database for protein sequence and function, covering the tree of life and over 220 million protein entries. Now, the whole community can use a new crowdsourcing annotation system to help scale up UniProt curation and receive proper attribution for their biocuration work.


Assuntos
Crowdsourcing/métodos , Curadoria de Dados/métodos , Anotação de Sequência Molecular/métodos , Sequência de Aminoácidos/genética , Biologia Computacional/métodos , Bases de Dados de Proteínas/tendências , Humanos , Literatura , Proteínas/metabolismo , Participação dos Interessados
5.
Database (Oxford) ; 20212021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34048547

RESUMO

microRNAs (miRNAs) are essential gene regulators, and their dysregulation often leads to diseases. Easy access to miRNA information is crucial for interpreting generated experimental data, connecting facts across publications and developing new hypotheses built on previous knowledge. Here, we present extracting miRNA Information from Text (emiRIT), a text-miningbased resource, which presents miRNA information mined from the literature through a user-friendly interface. We collected 149 ,233 miRNA -PubMed ID pairs from Medline between January 1997 and May 2020. emiRIT currently contains 'miRNA -gene regulation' (69 ,152 relations), 'miRNA disease (cancer)' (12 ,300 relations), 'miRNA -biological process and pathways' (23, 390 relations) and circulatory 'miRNAs in extracellular locations' (3782 relations). Biological entities and their relation to miRNAs were extracted from Medline abstracts using publicly available and in-house developed text-mining tools, and the entities were normalized to facilitate querying and integration. We built a database and an interface to store and access the integrated data, respectively. We provide an up-to-date and user-friendly resource to facilitate access to comprehensive miRNA information from the literature on a large scale, enabling users to navigate through different roles of miRNA and examine them in a context specific to their information needs. To assess our resource's information coverage, we have conducted two case studies focusing on the target and differential expression information of miRNAs in the context of cancer and a third case study to assess the usage of emiRIT in the curation of miRNA information. Database URL: https://research.bioinformatics.udel.edu/emirit/.


Assuntos
Mineração de Dados , MicroRNAs , Bases de Dados Factuais , MEDLINE , MicroRNAs/genética , PubMed
6.
Sci Data ; 7(1): 337, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046717

RESUMO

The Protein Ontology (PRO) provides an ontological representation of protein-related entities, ranging from protein families to proteoforms to complexes. Protein Ontology Linked Open Data (LOD) exposes, shares, and connects knowledge about protein-related entities on the Semantic Web using Resource Description Framework (RDF), thus enabling integration with other Linked Open Data for biological knowledge discovery. For example, proteins (or variants thereof) can be retrieved on the basis of specific disease associations. As a community resource, we strive to follow the Findability, Accessibility, Interoperability, and Reusability (FAIR) principles, disseminate regular updates of our data, support multiple methods for accessing, querying and downloading data in various formats, and provide documentation both for scientists and programmers. PRO Linked Open Data can be browsed via faceted browser interface and queried using SPARQL via YASGUI. RDF data dumps are also available for download. Additionally, we developed RESTful APIs to support programmatic data access. We also provide W3C HCLS specification compliant metadata description for our data. The PRO Linked Open Data is available at https://lod.proconsortium.org/ .


Assuntos
Descoberta do Conhecimento , Proteínas/química , Web Semântica , Conjuntos de Dados como Assunto , Software
7.
J Alzheimers Dis ; 77(1): 257-273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32716361

RESUMO

BACKGROUND: The analysis and interpretation of data generated from patient-derived clinical samples relies on access to high-quality bioinformatics resources. These are maintained and updated by expert curators extracting knowledge from unstructured biological data described in free-text journal articles and converting this into more structured, computationally-accessible forms. This enables analyses such as functional enrichment of sets of genes/proteins using the Gene Ontology, and makes the searching of data more productive by managing issues such as gene/protein name synonyms, identifier mapping, and data quality. OBJECTIVE: To undertake a coordinated annotation update of key public-domain resources to better support Alzheimer's disease research. METHODS: We have systematically identified target proteins critical to disease process, in part by accessing informed input from the clinical research community. RESULTS: Data from 954 papers have been added to the UniProtKB, Gene Ontology, and the International Molecular Exchange Consortium (IMEx) databases, with 299 human proteins and 279 orthologs updated in UniProtKB. 745 binary interactions were added to the IMEx human molecular interaction dataset. CONCLUSION: This represents a significant enhancement in the expert curated data pertinent to Alzheimer's disease available in a number of biomedical databases. Relevant protein entries have been updated in UniProtKB and concomitantly in the Gene Ontology. Molecular interaction networks have been significantly extended in the IMEx Consortium dataset and a set of reference protein complexes created. All the resources described are open-source and freely available to the research community and we provide examples of how these data could be exploited by researchers.


Assuntos
Doença de Alzheimer/genética , Biologia Computacional/métodos , Bases de Dados de Proteínas , Sistemas Inteligentes , Mapas de Interação de Proteínas/genética , Setor Público , Doença de Alzheimer/diagnóstico , Humanos
8.
Database (Oxford) ; 20202020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32367111

RESUMO

In the UniProt Knowledgebase (UniProtKB), publications providing evidence for a specific protein annotation entry are organized across different categories, such as function, interaction and expression, based on the type of data they contain. To provide a systematic way of categorizing computationally mapped bibliographies in UniProt, we investigate a convolutional neural network (CNN) model to classify publications with accession annotations according to UniProtKB categories. The main challenge of categorizing publications at the accession annotation level is that the same publication can be annotated with multiple proteins and thus be associated with different category sets according to the evidence provided for the protein. We propose a model that divides the document into parts containing and not containing evidence for the protein annotation. Then, we use these parts to create different feature sets for each accession and feed them to separate layers of the network. The CNN model achieved a micro F1-score of 0.72 and a macro F1-score of 0.62, outperforming baseline models based on logistic regression and support vector machine by up to 22 and 18 percentage points, respectively. We believe that such an approach could be used to systematically categorize the computationally mapped bibliography in UniProtKB, which represents a significant set of the publications, and help curators to decide whether a publication is relevant for further curation for a protein accession. Database URL: https://goldorak.hesge.ch/bioexpclass/upclass/.


Assuntos
Aprendizado Profundo , Bases de Dados de Proteínas , Bases de Conhecimento , Anotação de Sequência Molecular , Proteínas/genética
9.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30805646

RESUMO

Methods focused on predicting 'global' annotations for proteins (such as molecular function, biological process and presence of domains or membership in a family) have reached a relatively mature stage. Methods to provide fine-grained 'local' annotation of functional sites (at the level of individual amino acid) are now coming to the forefront, especially in light of the rapid accumulation of genetic variant data. We have developed a computational method and workflow that predicts functional sites within proteins using position-specific conditional template annotation rules (namely PIR Site Rules or PIRSRs for short). Such rules are curated through review of known protein structural and other experimental data by structural biologists and are used to generate high-quality annotations for the UniProt Knowledgebase (UniProtKB) unreviewed section. To share the PIRSR functional site prediction method with the broader scientific community, we have streamlined our workflow and developed a stand-alone Java software package named PIRSitePredict. We demonstrate the use of PIRSitePredict for functional annotation of de novo assembled genome/transcriptome by annotating uncharacterized proteins from Trinity RNA-seq assembly of embryonic transcriptomes of the following three cartilaginous fishes: Leucoraja erinacea (Little Skate), Scyliorhinus canicula (Small-spotted Catshark) and Callorhinchus milii (Elephant Shark). On average about 1200 lines of annotations were predicted for each species.


Assuntos
Bases de Dados de Proteínas , Anotação de Sequência Molecular , Sequência de Aminoácidos , Animais , Embrião não Mamífero/metabolismo , Peixes/embriologia , Peixes/genética , Genoma , Software , Transcriptoma/genética
10.
Nucleic Acids Res ; 46(D1): D542-D550, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29145615

RESUMO

Protein post-translational modifications (PTMs) play a pivotal role in numerous biological processes by modulating regulation of protein function. We have developed iPTMnet (http://proteininformationresource.org/iPTMnet) for PTM knowledge discovery, employing an integrative bioinformatics approach-combining text mining, data mining, and ontological representation to capture rich PTM information, including PTM enzyme-substrate-site relationships, PTM-specific protein-protein interactions (PPIs) and PTM conservation across species. iPTMnet encompasses data from (i) our PTM-focused text mining tools, RLIMS-P and eFIP, which extract phosphorylation information from full-scale mining of PubMed abstracts and full-length articles; (ii) a set of curated databases with experimentally observed PTMs; and iii) Protein Ontology that organizes proteins and PTM proteoforms, enabling their representation, annotation and comparison within and across species. Presently covering eight major PTM types (phosphorylation, ubiquitination, acetylation, methylation, glycosylation, S-nitrosylation, sumoylation and myristoylation), iPTMnet knowledgebase contains more than 654 500 unique PTM sites in over 62 100 proteins, along with more than 1200 PTM enzymes and over 24 300 PTM enzyme-substrate-site relations. The website supports online search, browsing, retrieval and visual analysis for scientific queries. Several examples, including functional interpretation of phosphoproteomic data, demonstrate iPTMnet as a gateway for visual exploration and systematic analysis of PTM networks and conservation, thereby enabling PTM discovery and hypothesis generation.


Assuntos
Bases de Dados de Proteínas , Bases de Conhecimento , Processamento de Proteína Pós-Traducional , Animais , Biologia Computacional , Mineração de Dados , Enzimas/metabolismo , Humanos , Internet , Fosforilação , Mapas de Interação de Proteínas , Alinhamento de Sequência
11.
Database (Oxford) ; 20172017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29220476

RESUMO

UniProt Knowledgebase (UniProtKB) is a publicly available database with access to a vast amount of protein sequence and functional information. To widen the scope of the publications associated with a protein entry, UniProt has introduced the computationally mapped additional bibliography section, which includes literature collected from external sources. In this article, we describe a text mining system, eGenPub, which selects articles that are 'about' specific proteins and allows automatic identification of additional bibliography for given UniProt protein entries. Focusing on plant proteins initially, eGenPub utilizes a gene normalization tool called pGenN, and a trained support vector machine model, which achieves a precision of 95.3%, to predict whether an article, based on its abstract, should be linked to a given UniProt entry. We have conducted a full-scale PubMed processing using eGenPub for eight common plant species. Altogether, 9025 articles are identified as relevant bibliography for 4752 UniProt entries, among which 5252 are additional papers not in the existing publication section. These newly computationally mapped additional bibliography via eGenPub is being integrated in the UniProt production pipeline, and can be accessed via the UniProtKB protein entry publication view.


Assuntos
Mineração de Dados , Bases de Dados Bibliográficas , Bases de Dados de Proteínas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas , Plantas/genética , Plantas/metabolismo
12.
Bioinformatics ; 33(21): 3454-3460, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036270

RESUMO

MOTIVATION: Biological knowledgebases, such as UniProtKB/Swiss-Prot, constitute an essential component of daily scientific research by offering distilled, summarized and computable knowledge extracted from the literature by expert curators. While knowledgebases play an increasingly important role in the scientific community, their ability to keep up with the growth of biomedical literature is under scrutiny. Using UniProtKB/Swiss-Prot as a case study, we address this concern via multiple literature triage approaches. RESULTS: With the assistance of the PubTator text-mining tool, we tagged more than 10 000 articles to assess the ratio of papers relevant for curation. We first show that curators read and evaluate many more papers than they curate, and that measuring the number of curated publications is insufficient to provide a complete picture as demonstrated by the fact that 8000-10 000 papers are curated in UniProt each year while curators evaluate 50 000-70 000 papers per year. We show that 90% of the papers in PubMed are out of the scope of UniProt, that a maximum of 2-3% of the papers indexed in PubMed each year are relevant for UniProt curation, and that, despite appearances, expert curation in UniProt is scalable. AVAILABILITY AND IMPLEMENTATION: UniProt is freely available at http://www.uniprot.org/. CONTACT: sylvain.poux@sib.swiss. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Curadoria de Dados , Bases de Dados de Proteínas , Curadoria de Dados/estatística & dados numéricos , Mineração de Dados , Bases de Dados de Proteínas/estatística & dados numéricos , Humanos , Bases de Conhecimento , PubMed/estatística & dados numéricos , Literatura de Revisão como Assunto , Estatística como Assunto
13.
Methods Mol Biol ; 1558: 57-78, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28150233

RESUMO

The Protein Ontology (PRO) is the reference ontology for proteins in the Open Biomedical Ontologies (OBO) foundry and consists of three sub-ontologies representing protein classes of homologous genes, proteoforms (e.g., splice isoforms, sequence variants, and post-translationally modified forms), and protein complexes. PRO defines classes of proteins and protein complexes, both species-specific and species nonspecific, and indicates their relationships in a hierarchical framework, supporting accurate protein annotation at the appropriate level of granularity, analyses of protein conservation across species, and semantic reasoning. In the first section of this chapter, we describe the PRO framework including categories of PRO terms and the relationship of PRO to other ontologies and protein resources. Next, we provide a tutorial about the PRO website ( proconsortium.org ) where users can browse and search the PRO hierarchy, view reports on individual PRO terms, and visualize relationships among PRO terms in a hierarchical table view, a multiple sequence alignment view, and a Cytoscape network view. Finally, we describe several examples illustrating the unique and rich information available in PRO.


Assuntos
Ontologias Biológicas , Biologia Computacional/métodos , Bases de Dados Genéticas , Proteínas/genética , Proteínas/metabolismo , Software , Navegador , Animais , Humanos , Anotação de Sequência Molecular , Proteínas/química , Interface Usuário-Computador
14.
Methods Mol Biol ; 1558: 213-232, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28150240

RESUMO

Post-translational modifications (PTMs) are one of the main contributors to the diversity of proteoforms in the proteomic landscape. In particular, protein phosphorylation represents an essential regulatory mechanism that plays a role in many biological processes. Protein kinases, the enzymes catalyzing this reaction, are key participants in metabolic and signaling pathways. Their activation or inactivation dictate downstream events: what substrates are modified and their subsequent impact (e.g., activation state, localization, protein-protein interactions (PPIs)). The biomedical literature continues to be the main source of evidence for experimental information about protein phosphorylation. Automatic methods to bring together phosphorylation events and phosphorylation-dependent PPIs can help to summarize the current knowledge and to expose hidden connections. In this chapter, we demonstrate two text mining tools, RLIMS-P and eFIP, for the retrieval and extraction of kinase-substrate-site data and phosphorylation-dependent PPIs from the literature. These tools offer several advantages over a literature search in PubMed as their results are specific for phosphorylation. RLIMS-P and eFIP results can be sorted, organized, and viewed in multiple ways to answer relevant biological questions, and the protein mentions are linked to UniProt identifiers.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Fosfoproteínas/metabolismo , Proteínas/metabolismo , Proteômica/métodos , Software , Bases de Dados de Proteínas , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Ferramenta de Busca , Interface Usuário-Computador , Navegador
15.
Methods Mol Biol ; 1558: 333-353, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28150246

RESUMO

Protein post-translational modification (PTM) is an essential cellular regulatory mechanism, and disruptions in PTM have been implicated in disease. PTMs are an active area of study in many fields, leading to a wealth of PTM information in the scientific literature. There is a need for user-friendly bioinformatics resources that capture PTM information from the literature and support analyses of PTMs and their functional consequences. This chapter describes the use of iPTMnet ( http://proteininformationresource.org/iPTMnet/ ), a resource that integrates PTM information from text mining, curated databases, and ontologies and provides visualization tools for exploring PTM networks, PTM crosstalk, and PTM conservation across species. We present several PTM-related queries and demonstrate how they can be addressed using iPTMnet.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Processamento de Proteína Pós-Traducional , Software , Navegador , Animais , Mineração de Dados/métodos , Humanos , Camundongos , Fosfotransferases , Proteínas de Plantas , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Ratos , Ferramenta de Busca , Interface Usuário-Computador
16.
Nucleic Acids Res ; 45(D1): D339-D346, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899649

RESUMO

The Protein Ontology (PRO; http://purl.obolibrary.org/obo/pr) formally defines and describes taxon-specific and taxon-neutral protein-related entities in three major areas: proteins related by evolution; proteins produced from a given gene; and protein-containing complexes. PRO thus serves as a tool for referencing protein entities at any level of specificity. To enhance this ability, and to facilitate the comparison of such entities described in different resources, we developed a standardized representation of proteoforms using UniProtKB as a sequence reference and PSI-MOD as a post-translational modification reference. We illustrate its use in facilitating an alignment between PRO and Reactome protein entities. We also address issues of scalability, describing our first steps into the use of text mining to identify protein-related entities, the large-scale import of proteoform information from expert curated resources, and our ability to dynamically generate PRO terms. Web views for individual terms are now more informative about closely-related terms, including for example an interactive multiple sequence alignment. Finally, we describe recent improvement in semantic utility, with PRO now represented in OWL and as a SPARQL endpoint. These developments will further support the anticipated growth of PRO and facilitate discoverability of and allow aggregation of data relating to protein entities.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Proteínas , Animais , Humanos , Proteínas/química , Proteínas/genética , Navegador
17.
PLoS One ; 10(10): e0141773, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26509276

RESUMO

Given the wealth of bioinformatics resources and the growing complexity of biological information, it is valuable to integrate data from disparate sources to gain insight into the role of genes/proteins in health and disease. We have developed a bioinformatics framework that combines literature mining with information from biomedical ontologies and curated databases to create knowledge "maps" of genes/proteins of interest. We applied this approach to the study of beta-catenin, a cell adhesion molecule and transcriptional regulator implicated in cancer. The knowledge map includes post-translational modifications (PTMs), protein-protein interactions, disease-associated mutations, and transcription factors co-activated by beta-catenin and their targets and captures the major processes in which beta-catenin is known to participate. Using the map, we generated testable hypotheses about beta-catenin biology in normal and cancer cells. By focusing on proteins participating in multiple relation types, we identified proteins that may participate in feedback loops regulating beta-catenin transcriptional activity. By combining multiple network relations with PTM proteoform-specific functional information, we proposed a mechanism to explain the observation that the cyclin dependent kinase CDK5 positively regulates beta-catenin co-activator activity. Finally, by overlaying cancer-associated mutation data with sequence features, we observed mutation patterns in several beta-catenin PTM sites and PTM enzyme binding sites that varied by tissue type, suggesting multiple mechanisms by which beta-catenin mutations can contribute to cancer. The approach described, which captures rich information for molecular species from genes and proteins to PTM proteoforms, is extensible to other proteins and their involvement in disease.


Assuntos
Biologia Computacional , Modelos Biológicos , Neoplasias/metabolismo , beta Catenina/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Mutação , Neoplasias/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transdução de Sinais , Ativação Transcricional , beta Catenina/genética
18.
PLoS Comput Biol ; 11(9): e1004391, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26407127

RESUMO

MicroRNAs (miRNAs) regulate a wide range of cellular and developmental processes through gene expression suppression or mRNA degradation. Experimentally validated miRNA gene targets are often reported in the literature. In this paper, we describe miRTex, a text mining system that extracts miRNA-target relations, as well as miRNA-gene and gene-miRNA regulation relations. The system achieves good precision and recall when evaluated on a literature corpus of 150 abstracts with F-scores close to 0.90 on the three different types of relations. We conducted full-scale text mining using miRTex to process all the Medline abstracts and all the full-length articles in the PubMed Central Open Access Subset. The results for all the Medline abstracts are stored in a database for interactive query and file download via the website at http://proteininformationresource.org/mirtex. Using miRTex, we identified genes potentially regulated by miRNAs in Triple Negative Breast Cancer, as well as miRNA-gene relations that, in conjunction with kinase-substrate relations, regulate the response to abiotic stress in Arabidopsis thaliana. These two use cases demonstrate the usefulness of miRTex text mining in the analysis of miRNA-regulated biological processes.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Genes/genética , MicroRNAs/genética , Bases de Dados Genéticas , Humanos , MicroRNAs/classificação , Modelos Genéticos , Publicações Periódicas como Assunto
19.
Artigo em Inglês | MEDLINE | ID: mdl-26357075

RESUMO

We introduce RLIMS-P version 2.0, an enhanced rule-based information extraction (IE) system for mining kinase, substrate, and phosphorylation site information from scientific literature. Consisting of natural language processing and IE modules, the system has integrated several new features, including the capability of processing full-text articles and generalizability towards different post-translational modifications (PTMs). To evaluate the system, sets of abstracts and full-text articles, containing a variety of textual expressions, were annotated. On the abstract corpus, the system achieved F-scores of 0.91, 0.92, and 0.95 for kinases, substrates, and sites, respectively. The corresponding scores on the full-text corpus were 0.88, 0.91, and 0.92. It was additionally evaluated on the corpus of the 2013 BioNLP-ST GE task, and achieved an F-score of 0.87 for the phosphorylation core task, improving upon the results previously reported on the corpus. Full-scale processing of all abstracts in MEDLINE and all articles in PubMed Central Open Access Subset has demonstrated scalability for mining rich information in literature, enabling its adoption for biocuration and for knowledge discovery. The new system is generalizable and it will be adapted to tackle other major PTM types. RLIMS-P 2.0 online system is available online (http://proteininformationresource.org/rlimsp/) and the developed corpora are available from iProLINK (http://proteininformationresource.org/iprolink/).


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Processamento de Linguagem Natural , Fosfoproteínas/química , Fosfoproteínas/classificação , Software , Bases de Dados de Proteínas , Fosfoproteínas/análise , Fosforilação
20.
PLoS One ; 10(8): e0135305, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26258475

RESUMO

BACKGROUND: Automatically detecting gene/protein names in the literature and connecting them to databases records, also known as gene normalization, provides a means to structure the information buried in free-text literature. Gene normalization is critical for improving the coverage of annotation in the databases, and is an essential component of many text mining systems and database curation pipelines. METHODS: In this manuscript, we describe a gene normalization system specifically tailored for plant species, called pGenN (pivot-based Gene Normalization). The system consists of three steps: dictionary-based gene mention detection, species assignment, and intra species normalization. We have developed new heuristics to improve each of these phases. RESULTS: We evaluated the performance of pGenN on an in-house expertly annotated corpus consisting of 104 plant relevant abstracts. Our system achieved an F-value of 88.9% (Precision 90.9% and Recall 87.2%) on this corpus, outperforming state-of-art systems presented in BioCreative III. We have processed over 440,000 plant-related Medline abstracts using pGenN. The gene normalization results are stored in a local database for direct query from the pGenN web interface (proteininformationresource.org/pgenn/). The annotated literature corpus is also publicly available through the PIR text mining portal (proteininformationresource.org/iprolink/).


Assuntos
Mineração de Dados/métodos , Genes de Plantas , Proteínas de Plantas/genética , Plantas/genética , Software , Bases de Dados Genéticas , Anotação de Sequência Molecular , Processamento de Linguagem Natural , Padrões de Referência , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...