Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Res Sq ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464119

RESUMO

Background: Personalized disease models are crucial for assessing the specific response of diseased cells to drugs, particularly novel biological therapeutics. Extracellular vesicles (EVs), nanosized vesicles released by cells for intercellular communication, have gained therapeutic interest due to their ability to reprogram target cells. We here utilized urinary podocytes obtained from children affected by steroid-resistant nephrotic syndrome with characterized genetic mutations as a model to test the therapeutic potential of EVs derived from kidney progenitor cells. Methods: EVs were isolated from kidney progenitor cells (nKPCs) derived from the urine of a preterm neonate. Three lines of urinary podocytes obtained from nephrotic patients' urine and a line of Alport patient podocytes were characterized and used to assess albumin permeability in response to various drugs or to nKPC-EVs. RNA sequencing was conducted to identify commonly modulated pathways. Results: Podocytes appeared unresponsive to pharmacological treatments, except for a podocyte line demonstrating responsiveness, in alignment with the patient's clinical response at 48 months. At variance, treatment with the nKPC-EVs was able to significantly reduce permeability in all the steroid-resistant patients-derived podocytes as well as in the line of Alport-derived podocytes. RNA sequencing of nKPC-EV-treated podocytes revealed the common upregulation of two genes (small ubiquitin-related modifier 1 (SUMO1) and Sentrin-specific protease 2 (SENP2)) involved in the SUMOylation pathway, a process recently demonstrated to play a role in slit diaphragm stabilization. Gene ontology analysis on podocyte expression profile highlighted cell-to-cell adhesion as the primary upregulated biological activity in treated podocytes. Conclusions: nKPCs emerge as a promising non-invasive source of EVs with potential therapeutic effects on podocyte dysfunction. Furthermore, our findings suggest the possibility of establishing a non-invasive in vitro model for screening regenerative compounds on patient-derived podocytes.

2.
Sci Data ; 11(1): 159, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307867

RESUMO

Single-cell RNA sequencing (scRNA-seq) has emerged as a vital tool in tumour research, enabling the exploration of molecular complexities at the individual cell level. It offers new technical possibilities for advancing tumour research with the potential to yield significant breakthroughs. However, deciphering meaningful insights from scRNA-seq data poses challenges, particularly in cell annotation and tumour subpopulation identification. Efficient algorithms are therefore needed to unravel the intricate biological processes of cancer. To address these challenges, benchmarking datasets are essential to validate bioinformatics methodologies for analysing single-cell omics in oncology. Here, we present a 10XGenomics scRNA-seq experiment, providing a controlled heterogeneous environment using lung cancer cell lines characterised by the expression of seven different driver genes (EGFR, ALK, MET, ERBB2, KRAS, BRAF, ROS1), leading to partially overlapping functional pathways. Our dataset provides a comprehensive framework for the development and validation of methodologies for analysing cancer heterogeneity by means of scRNA-seq.


Assuntos
Benchmarking , Neoplasias Pulmonares , Humanos , Algoritmos , Perfilação da Expressão Gênica/métodos , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas/genética , Análise de Sequência de RNA/métodos , Análise da Expressão Gênica de Célula Única , Linhagem Celular Tumoral
3.
Animals (Basel) ; 13(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003113

RESUMO

The use of anabolic-androgenic steroids (AASs) as growth promoters in farm animals is banned in the European Union, representing both an illicit practice and a risk for consumer health. However, these compounds are still illegally administered, often in the form of synthetic esters. This work aimed to characterize significant coding RNA perturbations related to the illicit administration of testosterone and nandrolone esters in fattening pigs. A total of 27 clinically healthy 90-day-old pigs were randomly assigned to test and control groups. Nine animals were treated with testosterone esters (Sustanon®) and other nine with nandrolone esters (Myodine®). At the end of the trial, liver samples were collected and analyzed using RNAseq, allowing the identification of 491 differentially expressed genes (DEGs). The transcriptional signature was further characterized by a smaller sub-cluster of 143 DEGs, from which a selection of 16 genes was made. The qPCR analysis confirmed that the identified cluster could still give good discrimination between untreated gilt and barrows compared to the relative testosterone-treated counterparts. A conclusive field survey on 67 liver samples collected from pigs of different breeds and weight categories confirmed, in agreement with testosterone residue profiles, the specificity of selected transcriptional biomarkers, showing their potential applications for screening purposes when AAS treatment is suspected, allowing to focus further investigations of competent authorities and confirmatory analysis where needed.

4.
Front Oncol ; 13: 1136331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287922

RESUMO

Gastro-entero-pancreatic neuroendocrine tumors (GEP-NETs) are rare diseases encompassing pancreatic (PanNETs) and ileal NETs (SINETs), characterized by heterogeneous somatostatin receptors (SSTRs) expression. Treatments for inoperable GEP-NETs are limited, and SSTR-targeted Peptide Receptor Radionuclide Therapy (PRRT) achieves variable responses. Prognostic biomarkers for the management of GEP-NET patients are required. 18F-FDG uptake is a prognostic indicator of aggressiveness in GEP-NETs. This study aims to identify circulating and measurable prognostic miRNAs associated with 18F-FDG-PET/CT status, higher risk and lower response to PRRT. Methods: Whole miRNOme NGS profiling was conducted on plasma samples obtained from well-differentiated advanced, metastatic, inoperable G1, G2 and G3 GEP-NET patients enrolled in the non-randomized LUX (NCT02736500) and LUNET (NCT02489604) clinical trials prior to PRRT (screening set, n= 24). Differential expression analysis was performed between 18F-FDG positive (n=12) and negative (n=12) patients. Validation was conducted by Real Time quantitative PCR in two distinct well-differentiated GEP-NET validation cohorts, considering the primary site of origin (PanNETs n=38 and SINETs n=30). The Cox regression was applied to assess independent clinical parameters and imaging for progression-free survival (PFS) in PanNETs. In situ RNA hybridization combined with immunohistochemistry was performed to simultaneously detect miR and protein expression in the same tissue specimens. This novel semi-automated miR-protein protocol was applied in PanNET FFPE specimens (n=9). In vitro functional experiments were performed in PanNET models. Results: While no miRNAs emerged to be deregulated in SINETs, hsa-miR-5096, hsa-let-7i-3p and hsa-miR-4311 were found to correlate with 18F-FDG-PET/CT in PanNETs (p-value:<0.005). Statistical analysis has shown that, hsa-miR-5096 can predict 6-month PFS (p-value:<0.001) and 12-month Overall Survival upon PRRT treatment (p-value:<0.05), as well as identify 18F-FDG-PET/CT positive PanNETs with worse prognosis after PRRT (p-value:<0.005). In addition, hsa-miR-5096 inversely correlated with both SSTR2 expression in PanNET tissue and with the 68Gallium-DOTATOC captation values (p-value:<0.05), and accordingly it was able to decrease SSTR2 when ectopically expressed in PanNET cells (p-value:<0.01). Conclusions: hsa-miR-5096 well performs as a biomarker for 18F-FDG-PET/CT and as independent predictor of PFS. Moreover, exosome-mediated delivery of hsa-miR-5096 may promote SSTR2 heterogeneity and thus resistance to PRRT.

5.
Sci Transl Med ; 15(702): eabo3826, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379367

RESUMO

Anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKIs) show potent efficacy in several ALK-driven tumors, but the development of resistance limits their long-term clinical impact. Although resistance mechanisms have been studied extensively in ALK-driven non-small cell lung cancer, they are poorly understood in ALK-driven anaplastic large cell lymphoma (ALCL). Here, we identify a survival pathway supported by the tumor microenvironment that activates phosphatidylinositol 3-kinase γ (PI3K-γ) signaling through the C-C motif chemokine receptor 7 (CCR7). We found increased PI3K signaling in patients and ALCL cell lines resistant to ALK TKIs. PI3Kγ expression was predictive of a lack of response to ALK TKI in patients with ALCL. Expression of CCR7, PI3Kγ, and PI3Kδ were up-regulated during ALK or STAT3 inhibition or degradation and a constitutively active PI3Kγ isoform cooperated with oncogenic ALK to accelerate lymphomagenesis in mice. In a three-dimensional microfluidic chip, endothelial cells that produce the CCR7 ligands CCL19/CCL21 protected ALCL cells from apoptosis induced by crizotinib. The PI3Kγ/δ inhibitor duvelisib potentiated crizotinib activity against ALCL lines and patient-derived xenografts. Furthermore, genetic deletion of CCR7 blocked the central nervous system dissemination and perivascular growth of ALCL in mice treated with crizotinib. Thus, blockade of PI3Kγ or CCR7 signaling together with ALK TKI treatment reduces primary resistance and the survival of persister lymphoma cells in ALCL.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Linfoma Anaplásico de Células Grandes , Humanos , Animais , Camundongos , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Receptores Proteína Tirosina Quinases/metabolismo , Quinase do Linfoma Anaplásico , Receptores CCR7/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Células Endoteliais/metabolismo , Fosfatidilinositol 3-Quinases , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Tirosina Quinases , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Methods Mol Biol ; 2584: 191-203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36495450

RESUMO

The transcriptome of a tissue can be acquired both by single-cell RNAseq (scRNA-seq) and by spatial transcriptomics (ST). The dissociation step, which is mandatory in scRNA-seq methods, might lead to the loss of fragile cells and of spatial information, thus limiting the acquisition of the tissue cellular organization. Spatial transcriptomics methods moderate the above-mentioned issues and provide single-cell transcripts detection over an intact fresh frozen tissue section. Visium platform, commercialized from 10× Genomics, provides a whole transcriptome spatial transcriptomics platform, which does not require dedicated instruments, other than those available in any pathology laboratory. In spatial transcriptomics, proper tissue handling is mandatory to preserve the morphological quality of the tissue sections and the integrity of mRNA transcripts. Proper tissue handling is critical for downstream library preparation and sequencing performance. In this chapter, we describe the most critical steps of Visium protocol on fresh frozen tissues and we provide indications on how to interpret the data obtained from the quality control analysis recommended during the workflow.


Assuntos
Perfilação da Expressão Gênica , RNA , RNA/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Transcriptoma , Biblioteca Gênica , Análise de Célula Única/métodos
7.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580930

RESUMO

BACKGROUND: Melanoma is the most lethal form of skin cancer in humans. Conventional therapies have limited efficacy, and overall response is still unsatisfactory considering that immune checkpoint inhibitors induce lasting clinical responses only in a low percentage of patients. This has prompted us to develop a vaccination strategy employing the tumor antigen chondroitin sulfate proteoglycan (CSPG)4 as a target. METHODS: To overcome the host's unresponsiveness to the self-antigen CSPG4, we have taken advantage of the conservation of CSPG4 sequence through phylogenetic evolution, so we have used a vaccine, based on a chimeric DNA molecule encompassing both human (Hu) and dog (Do) portions of CSPG4 (HuDo-CSPG4). We have tested its safety and immunogenicity (primary objectives), along with its therapeutic efficacy (secondary outcome), in a prospective, non-randomized, veterinary clinical trial enrolling 80 client-owned dogs with surgically resected, CSPG4-positive, stage II-IV oral melanoma. RESULTS: Vaccinated dogs developed anti-Do-CSPG4 and Hu-CSPG4 immune response. Interestingly, the antibody titer in vaccinated dogs was significantly associated with the overall survival. Our data suggest that there may be a contribution of the HuDo-CSPG4 vaccination to the improvement of survival of vaccinated dogs as compared with controls treated with conventional therapies alone. CONCLUSIONS: HuDo-CSPG4 adjuvant vaccination was safe and immunogenic in dogs with oral melanoma, with potential beneficial effects on the course of the disease. Thanks to the power of naturally occurring canine tumors as predictive models for cancer immunotherapy response, these data may represent a basis for the translation of this approach to the treatment of human patients with CSPG4-positive melanoma subtypes.


Assuntos
Vacinas Anticâncer , Proteoglicanas de Sulfatos de Condroitina , Doenças do Cão , Melanoma , Proteínas de Membrana , Neoplasias Bucais , Animais , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Proteoglicanas de Sulfatos de Condroitina/imunologia , Doenças do Cão/tratamento farmacológico , Doenças do Cão/imunologia , Cães , Melanoma/tratamento farmacológico , Melanoma/veterinária , Proteínas de Membrana/imunologia , Mimetismo Molecular/imunologia , Neoplasias Bucais/terapia , Neoplasias Bucais/veterinária , Filogenia , Estudos Prospectivos , Melanoma Maligno Cutâneo
8.
Life Sci Alliance ; 5(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35636967

RESUMO

MET is an oncogene encoding the tyrosine kinase receptor for hepatocyte growth factor (HGF). Upon ligand binding, MET activates multiple signal transducers, including PI3K/AKT, STAT3, and MAPK. When mutated or amplified, MET becomes a "driver" for the onset and progression of cancer. The most frequent mutations in the MET gene affect the splicing sites of exon 14, leading to the deletion of the receptor's juxtamembrane domain (MET∆14). It is currently believed that, as in gene amplification, MET∆14 kinase is constitutively active. Our analysis of MET in carcinoma cell lines showed that MET∆14 strictly depends on HGF for kinase activation. Compared with wt MET, ∆14 is sensitive to lower HGF concentrations, with more sustained kinase response. Using three different models, we have demonstrated that MET∆14 activation leads to robust phosphorylation of AKT, leading to a distinctive transcriptomic signature. Functional studies revealed that ∆14 activation is predominantly responsible for enhanced protection from apoptosis and cellular migration. Thus, the unique HGF-dependent ∆14 oncogenic activity suggests consideration of HGF in the tumour microenvironment to select patients for clinical trials.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-met , Humanos , Ligantes , Oncogenes , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
9.
Front Aging Neurosci ; 14: 785741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250537

RESUMO

OBJECTIVES: There is a lack of effective biomarkers for neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia. Extracellular vesicle (EV) RNA cargo can have an interesting potential as a non-invasive biomarker for NDs. However, the knowledge about the abundance of EV-mRNAs and their contribution to neurodegeneration is not clear. METHODS: Large and small EVs (LEVs and SEVs) were isolated from plasma of patients and healthy volunteers (control, CTR) by differential centrifugation and filtration, and RNA was extracted. Whole transcriptome was carried out using next generation sequencing (NGS). RESULTS: Coding RNA (i.e., mRNA) but not long non-coding RNAs (lncRNAs) in SEVs and LEVs of patients with ALS could be distinguished from healthy CTRs and from other NDs using the principal component analysis (PCA). Some mRNAs were found in commonly deregulated between SEVs of patients with ALS and frontotemporal dementia (FTD), and they were classified in mRNA processing and splicing pathways. In LEVs, instead, one mRNA and one antisense RNA (i.e., MAP3K7CL and AP003068.3) were found to be in common among ALS, FTD, and PD. No deregulated mRNAs were found in EVs of patients with AD. CONCLUSION: Different RNA regulation occurs in LEVs and SEVs of NDs. mRNAs and lncRNAs are present in plasma-derived EVs of NDs, and there are common and specific transcripts that characterize LEVs and SEVs from the NDs considered in this study.

10.
Cells ; 11(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011736

RESUMO

Teneurin 4 (TENM4) is a transmembrane protein that is codified by the ODZ4 gene and is involved in nervous system development, neurite outgrowth, and neuronal differentiation. In line with its involvement in the nervous system, TENM4 has also been implicated in several mental disorders such as bipolar disorder, schizophrenia, and autism. TENM4 mutations and rearrangements have recently been identified in a number of tumors. This, combined with impaired expression in tumors, suggests that it may potentially be involved in tumorigenesis. Most of the TENM4 mutations that are observed in tumors occur in breast cancer, in which TENM4 plays a role in cells' migration and stemness. However, the functional role that TENM4 plays in breast cancer still needs to be better evaluated, and further studies are required to better understand the involvement of TENM4 in breast cancer progression. Herein, we review the currently available data for TENM4's role in breast cancer and propose its use as both a novel target with which to ameliorate patient prognosis and as a potential biomarker. Moreover, we also report data on the tumorigenic role of miR-708 deregulation and the possible use of this miRNA as a novel therapeutic molecule, as miR-708 is spliced out from TENM4 mRNA.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Carcinogênese/genética , Carcinogênese/patologia , Glicoproteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Terapia de Alvo Molecular
11.
Antioxid Redox Signal ; 36(7-9): 480-504, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34779230

RESUMO

Aims: Biliary diseases represent around 10% of all chronic liver diseases and affect both adults and children. Currently available biochemical tests detect cholestasis but not early liver fibrosis. Circulating extracellular vesicles (EVs) provide a noninvasive, real-time molecular snapshot of the injured organ. We thus aimed at searching for a panel of EV-based biomarkers for cholestasis-induced early liver fibrosis using mouse models. Results: Progressive and detectable histological evidence of collagen deposition and liver fibrosis was observed from day 8 after bile duct ligation (BDL) in mice. Whole transcriptome and small RNA sequencing analyses of circulating EVs revealed differentially enriched RNA species after BDL versus sham controls. Unsupervised hierarchical clustering identified a signature that allowed for discrimination between BDL and controls. In particular, 151 microRNAs (miRNAs) enriched in BDL-derived EVs were identified, of which 66 were conserved in humans. The liver was an important source of circulating EVs in BDL animals as evidenced by the enrichment of several hepatic mRNAs, such as Albumin and Haptoglobin. Interestingly, among experimentally validated miRNAs, miR192-5p, miR194-5p, miR22-3p, and miR29a-3p showed similar enrichment patterns also in EVs derived from 3,5-diethoxycarboncyl-1,4-dihydrocollidine-treated (drug-induced severe cholestasis) but not in mice with mild phenotype or non-cholestatic liver fibrosis. Innovation: A panel of mRNAs and miRNAs contained in circulating EVs, when combined, indicates hepatic damage and fibrosis in mice and represents promising biomarkers for human severe cholestasis-induced liver fibrosis. Conclusion: Analysis of EV-based miRNAs, in combination with hepatic injury RNA markers, can detect early cholestatic liver injury and fibrosis in mice. Antioxid. Redox Signal. 36, 480-504.


Assuntos
Colestase , Vesículas Extracelulares , MicroRNAs , Animais , Colestase/genética , Colestase/patologia , Modelos Animais de Doenças , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Camundongos , MicroRNAs/genética
12.
Front Oncol ; 12: 1085672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698412

RESUMO

Anaplastic Large Cell Lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma frequently driven by the chimeric tyrosine kinase NPM-ALK, generated by the t (2,5)(p23;q35) translocation. While ALK+ ALCL belongs to mature T cell lymphomas, loss of T cell identity is observed in the majority of ALCL secondary to a transcriptional and epigenetic repressive program induced by oncogenic NPM-ALK. While inhibiting the expression of T cell molecules, NPM-ALK activates surrogate TCR signaling by directly inducing pathways downstream the TCR. CD45 is a tyrosine phosphatase that plays a central role in T cell activation by controlling the TCR signaling and regulating the cytokine responses through the JAK/STAT pathway and exists in different isoforms depending on the stage of T-cell maturation, activation and differentiation. ALK+ ALCL cells mainly express the isoform CD45RO in keeping with their mature/memory T cell phenotype. Because of its regulatory effect on the JAK/STAT pathway that is essential for ALK+ ALCL, we investigated whether CD45 expression was affected by oncogenic ALK. We found that most ALK+ ALCL cell lines express the CD45RO isoform with modest CD45RA expression and that NPM-ALK regulated the expression of these CD45 isoforms. Regulation of CD45 expression was dependent on ALK kinase activity as CD45RO expression was increased when NPM-ALK kinase activity was inhibited by treatment with ALK tyrosine kinase inhibitors (TKIs). Silencing ALK expression through shRNA or degradation of ALK by the PROTAC TL13-112 caused upregulation of CD45RO both at mRNA and protein levels with minimal changes on CD45RA, overall indicating that oncogenic ALK downregulates the expression of CD45. CD45 repression was mediated by STAT3 as demonstrated by ChIP-seq data on ALCL cells treated with the ALK-TKI crizotinib or cells treated with a STAT3 degrader. Next, we found that knocking-out CD45 with the CRISPR/Cas9 system resulted in increased resistance to ALK TKI treatment and CD45 was down-regulated in ALCL cells that developed resistance in vitro to ALK TKIs. Overall, these data suggest that CD45 expression is regulated by ALK via STAT3 and acts as a rheostat of ALK oncogenic signaling and resistance to TKI treatment in ALCL.

13.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884559

RESUMO

BACKGROUND: Biological processes are based on complex networks of cells and molecules. Single cell multi-omics is a new tool aiming to provide new incites in the complex network of events controlling the functionality of the cell. METHODS: Since single cell technologies provide many sample measurements, they are the ideal environment for the application of Deep Learning and Machine Learning approaches. An autoencoder is composed of an encoder and a decoder sub-model. An autoencoder is a very powerful tool in data compression and noise removal. However, the decoder model remains a black box from which is impossible to depict the contribution of the single input elements. We have recently developed a new class of autoencoders, called Sparsely Connected Autoencoders (SCA), which have the advantage of providing a controlled association among the input layer and the decoder module. This new architecture has the benefit that the decoder model is not a black box anymore and can be used to depict new biologically interesting features from single cell data. RESULTS: Here, we show that SCA hidden layer can grab new information usually hidden in single cell data, like providing clustering on meta-features difficult, i.e. transcription factors expression, or not technically not possible, i.e. miRNA expression, to depict in single cell RNAseq data. Furthermore, SCA representation of cell clusters has the advantage of simulating a conventional bulk RNAseq, which is a data transformation allowing the identification of similarity among independent experiments. CONCLUSIONS: In our opinion, SCA represents the bioinformatics version of a universal "Swiss-knife" for the extraction of hidden knowledgeable features from single cell omics data.


Assuntos
Adenocarcinoma de Pulmão/patologia , Análise por Conglomerados , Biologia Computacional/métodos , Neoplasias Pulmonares/patologia , Aprendizado de Máquina , Redes Neurais de Computação , Análise de Célula Única/métodos , Adenocarcinoma de Pulmão/genética , Humanos , Neoplasias Pulmonares/genética , Sequenciamento do Exoma
14.
Oncogenesis ; 10(11): 77, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34775465

RESUMO

HER2-positive breast cancers may lose HER2 expression in recurrences and metastases. In this work, we studied cell lines derived from two transgenic mammary tumors driven by human HER2 that showed different dynamics of HER2 status. MamBo89HER2stable cell line displayed high and stable HER2 expression, which was maintained upon in vivo passages, whereas MamBo43HER2labile cell line gave rise to HER2-negative tumors from which MamBo38HER2loss cell line was derived. Both low-density seeding and in vitro trastuzumab treatment of MamBo43HER2labile cells induced the loss of HER2 expression. MamBo38HER2loss cells showed a spindle-like morphology, high stemness and acquired in vivo malignancy. A comprehensive molecular profile confirmed the loss of addiction to HER2 signaling and acquisition of an EMT signature, together with increased angiogenesis and migration ability. We identified PDGFR-B among the newly expressed determinants of MamBo38HER2loss cell tumorigenic ability. Sunitinib inhibited MamBo38HER2loss tumor growth in vivo and reduced stemness and IL6 production in vitro. In conclusion, HER2-positive mammary tumors can evolve into tumors that display distinctive traits of claudin-low tumors. Our dynamic model of HER2 status can lead to the identification of new druggable targets, such as PDGFR-B, in order to counteract the resistance to HER2-targeted therapy that is caused by HER2 loss.

15.
Blood Adv ; 5(23): 5239-5257, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34625792

RESUMO

The expression of BCL6 in B-cell lymphoma can be deregulated by chromosomal translocations, somatic mutations in the promoter regulatory regions, or reduced proteasome-mediated degradation. FBXO11 was recently identified as a ubiquitin ligase that is involved in the degradation of BCL6, and it is frequently inactivated in lymphoma or other tumors. Here, we show that FBXO11 mutations are found in 23% of patients with Burkitt lymphoma (BL). FBXO11 mutations impaired BCL6 degradation, and the deletion of FBXO11 protein completely stabilized BCL6 levels in human BL cell lines. Conditional deletion of 1 or 2 copies of the FBXO11 gene in mice cooperated with oncogenic MYC and accelerated B-cell lymphoma onset, providing experimental evidence that FBXO11 is a haploinsufficient oncosuppressor in B-cell lymphoma. In wild-type and FBXO11-deficient BL mouse and human cell lines, targeting BCL6 via specific degraders or inhibitors partially impaired lymphoma growth in vitro and in vivo. Inhibition of MYC by the Omomyc mini-protein blocked cell proliferation and increased apoptosis, effects further increased by combined BCL6 targeting. Thus, by validating the functional role of FBXO11 mutations in BL, we further highlight the key role of BCL6 in BL biology and provide evidence that innovative therapeutic approaches, such as BCL6 degraders and direct MYC inhibition, could be exploited as a targeted therapy for BL.


Assuntos
Linfoma de Burkitt , Proteínas F-Box , Linfoma de Células B , Animais , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Proteínas F-Box/genética , Genes myc , Humanos , Linfoma de Células B/genética , Camundongos , Mutação , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo
16.
Sci Rep ; 11(1): 14712, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282201

RESUMO

Post-surgical management is an important issue in veterinary medicine, requiring biomarkers with high sensitivity and specificity for timely and effective treatment. Emerging evidence suggests that miRNAs are promising stress- and pain-related markers. The aims were to profile the circulating miRNA signature in plasma of turtles (Trachemys scripta) and point out potential candidate biomarkers to assess the status of the animal. The plasma of female turtles underwent surgical gonadectomy were collected 24 h pre-surgery, and 2.5 h and 36 h post-surgery. The expression of miRNAs was profiled by Next Generation Sequencing and the dysregulated miRNAs were validated using RT-qPCR. The diagnostic value of miRNAs was calculated by ROC curves. The results showed that 14 miRNAs were differentially expressed over time. RT-qPCR validation highlighted that 2-miR-499-3p and miR-203-5p-out of 8 miRNAs tested were effectively modulated. The Area Under the Curve (AUC) of miR-203-5p was fair (AUC 0.7934) in discriminating pre- and 36 h post-surgery samples and poor for other time points; the AUC of miR-499-3p was excellent (AUC 0.944) in discriminating pre-surgery and 2.5 h post-surgery samples, and fair in discriminating pre-surgery and 36 h post-surgery (AUC 0.7292) and 2.5 h and 36 h post-surgery (AUC 0.7569) samples. In conclusion, we demonstrated for the first time that miRNAs profile changes in plasma of turtles underwent surgical oophorectomy and identified miR-203-5p and miR-499-3p as potential candidate biomarkers to assess animals' status. Further studies are necessary to confirm their diagnostic value and to investigate functional and mechanistic networks to improve our understanding of the biological processes.


Assuntos
MicroRNA Circulante/genética , Transcriptoma , Tartarugas/genética , Anestesia Geral/veterinária , Animais , Castração/métodos , Castração/veterinária , MicroRNA Circulante/análise , MicroRNA Circulante/sangue , Procedimentos Cirúrgicos Eletivos/veterinária , Feminino , Perfilação da Expressão Gênica/veterinária , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Itália , Período Pós-Operatório , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Tartarugas/sangue , Tartarugas/cirurgia
17.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800495

RESUMO

Identifying biomarkers is essential for early diagnosis of neurodegenerative diseases (NDs). Large (LEVs) and small extracellular vesicles (SEVs) are extracellular vesicles (EVs) of different sizes and biological functions transported in blood and they may be valid biomarkers for NDs. The aim of our study was to investigate common and different miRNA signatures in plasma derived LEVs and SEVs of Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Fronto-Temporal Dementia (FTD) patients. LEVs and SEVs were isolated from plasma of patients and healthy volunteers (CTR) by filtration and differential centrifugation and RNA was extracted. Small RNAs libraries were carried out by Next Generation Sequencing (NGS). MiRNAs discriminate all NDs diseases from CTRs and they can provide a signature for each NDs. Common enriched pathways for SEVs were instead linked to ubiquitin mediated proteolysis and Toll-like receptor signaling pathways and for LEVs to neurotrophin signaling and Glycosphingolipid biosynthesis pathway. LEVs and SEVs are involved in different pathways and this might give a specificity to their role in the spreading of the disease. The study of common and different miRNAs transported by LEVs and SEVs can be of great interest for biomarker discovery and for pathogenesis studies in neurodegeneration.


Assuntos
MicroRNA Circulante/sangue , Vesículas Extracelulares/metabolismo , Perfilação da Expressão Gênica , Doenças Neurodegenerativas/sangue , Transdução de Sinais , Idoso , Idoso de 80 Anos ou mais , MicroRNA Circulante/genética , Vesículas Extracelulares/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/genética
18.
Methods Mol Biol ; 2284: 289-301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33835449

RESUMO

Single-cell RNAseq data can be generated using various technologies, spanning from isolation of cells by FACS sorting or droplet sequencing, to the use of frozen tissue sections retaining spatial information of cells in their morphological context. The analysis of single cell RNAseq data is mainly focused on the identification of cell subpopulations characterized by specific gene markers that can be used to purify the population of interest for further biological studies. This chapter describes the steps required for dataset clustering and markers detection using a droplet dataset and a spatial transcriptomics dataset.


Assuntos
Biologia Computacional/métodos , RNA-Seq/métodos , Análise de Célula Única/métodos , Análise por Conglomerados , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de RNA/métodos , Sequenciamento do Exoma/métodos
19.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921709

RESUMO

BACKGROUND: Disruption of alternative splicing (AS) is frequently observed in cancer and might represent an important signature for tumor progression and therapy. Exon skipping (ES) represents one of the most frequent AS events, and in non-small cell lung cancer (NSCLC) MET exon 14 skipping was shown to be targetable. METHODS: We constructed neural networks (NN/CNN) specifically designed to detect MET exon 14 skipping events using RNAseq data. Furthermore, for discovery purposes we also developed a sparsely connected autoencoder to identify uncharacterized MET isoforms. RESULTS: The neural networks had a Met exon 14 skipping detection rate greater than 94% when tested on a manually curated set of 690 TCGA bronchus and lung samples. When globally applied to 2605 TCGA samples, we observed that the majority of false positives was characterized by a blurry coverage of exon 14, but interestingly they share a common coverage peak in the second intron and we speculate that this event could be the transcription signature of a LINE1 (Long Interspersed Nuclear Element 1)-MET (Mesenchymal Epithelial Transition receptor tyrosine kinase) fusion. CONCLUSIONS: Taken together, our results indicate that neural networks can be an effective tool to provide a quick classification of pathological transcription events, and sparsely connected autoencoders could represent the basis for the development of an effective discovery tool.


Assuntos
Aprendizado Profundo , Éxons/genética , Variação Genética/genética , Humanos , Redes Neurais de Computação
20.
Cancers (Basel) ; 13(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672732

RESUMO

Triple-negative breast cancer (TNBC) is insensitive to endocrine and Her2-directed therapies, making the development of TNBC-targeted therapies an unmet medical need. Since patients with TNBC frequently show a quicker relapse and metastatic progression compared to other breast cancer subtypes, we hypothesized that cancer stem cells (CSC) could have a role in TNBC. To identify putative TNBC CSC-associated targets, we compared the gene expression profiles of CSC-enriched tumorspheres and their parental cells grown as monolayer. Among the up-regulated genes coding for cell membrane-associated proteins, we selected Teneurin 4 (TENM4), involved in cell differentiation and deregulated in tumors of different histotypes, as the object for this study. Meta-analysis of breast cancer datasets shows that TENM4 mRNA is up-regulated in invasive carcinoma specimens compared to normal breast and that high expression of TENM4 correlates with a shorter relapse-free survival in TNBC patients. TENM4 silencing in mammary cancer cells significantly impaired tumorsphere-forming ability, migratory capacity and Focal Adhesion Kinase (FAK) phosphorylation. Moreover, we found higher levels of TENM4 in plasma from tumor-bearing mice and TNBC patients compared to the healthy controls. Overall, our results indicate that TENM4 may act as a novel biomarker and target for the treatment of TNBC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...