Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4291, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769112

RESUMO

Van-der-Waals magnetic materials can be exfoliated to realize ultrathin sheets or interfaces with highly controllable optical or spintronics responses. In majority, these are collinear ferro-, ferri-, or antiferromagnets, with a particular scarcity of lattice-incommensurate helimagnets of defined left- or right-handed rotation sense, or helicity. Here, we report polarized neutron scattering experiments on DyTe3, whose layered structure has highly metallic tellurium layers separated by double-slabs of dysprosium square nets. We reveal cycloidal (conical) magnetic textures, with coupled commensurate and incommensurate order parameters, and probe the evolution of this ground state in a magnetic field. The observations are well explained by a one-dimensional spin model, with an off-diagonal on-site term that is spatially modulated by DyTe3's unconventional charge density wave (CDW) order. The CDW-driven term couples to antiferromagnetism, or to the net magnetization in an applied magnetic field, and creates a complex magnetic phase diagram indicative of competing interactions in this easily cleavable van-der-Waals helimagnet.

2.
Nat Commun ; 15(1): 3028, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627402

RESUMO

Mixed-stack complexes which comprise columns of alternating donors and acceptors are organic conductors with typically poor electrical conductivity because they are either in a neutral or highly ionic state. This indicates that conductive carriers are insufficient or are mainly localized. In this study, mixed-stack complexes that uniquely exist at the neutral-ionic boundary were synthesized by combining donors (bis(3,4-ethylenedichalcogenothiophene)) and acceptors (fluorinated tetracyanoquinodimethanes) with similar energy levels and orbital symmetry between the highest occupied molecular orbital of the donor and the lowest unoccupied molecular orbital of the acceptor. Surprisingly, the orbitals were highly hybridized in the single-crystal complexes, enhancing the room-temperature conductivity (10-4-0.1 S cm-1) of mixed-stack complexes. Specifically, the maximum conductivity was the highest reported for single-crystal mixed-stack complexes under ambient pressures. The unique electronic structures at the neutral-ionic boundary exhibited structural perturbations between their electron-itinerant and localized states, causing abrupt temperature-dependent changes in their electrical, optical, dielectric, and magnetic properties.

3.
J Phys Condens Matter ; 36(32)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38684155

RESUMO

CoNb2O6is a model system for a spin-1/2 one-dimensional (1D) transverse-field Ising magnet (TFIM) with a rather low three-dimensional (3D) Néel ordering temperature atTN=2.95K. We studied CoNb2O6using ultrasound measurements down to 0.3 K in transverse magnetic fields applied along thebdirection. Upon entering the 3D ordered state, we observe pronounced anomalies in the transverse acoustic modec66. In particular, from 1.3 to 1.5 K and around 4.7 T, this mode reveals an almost diverging softening, which is considerably reduced at lower and higher magnetic fields. We interpret this as an influence of quantum critical fluctuations emerging from the quantum critical point (QCP) of the 1D Ising spin chains at about 4.75 T, which lies below the QCP of the 3D ordering at about 5.4 T. This is clear experimental evidence of the predicted generic phase diagram for a TFIM with superimposed 3D ordering.

4.
Nat Commun ; 14(1): 6339, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816724

RESUMO

The discovery of topological insulators and semimetals triggered enormous interest in exploring emergent electromagnetic responses in solids. Particular attention has been focused on ternary half-Heusler compounds, whose electronic structure bears analogy to the topological zinc-blende compounds while also including magnetic rare-earth ions coupled to conduction electrons. However, most of the research in this system has been in band-inverted zero-gap semiconductors such as GdPtBi, which still does not fully exhaust the large potential of this material class. Here, we report a less-studied member of half-Heusler compounds, HoAuSn, which we show is a trivial semimetal or narrow-gap semiconductor at zero magnetic field but undergoes a field-induced transition to a Weyl semimetal, with a negative magnetoresistance exceeding four orders of magnitude at low temperatures. The combined study of Shubnikov-de Haas oscillations and first-principles calculation suggests that the exchange field from Ho 4f moments reconstructs the band structure to induce Weyl points which play a key role in the strong suppression of large-angle carrier scattering. Our findings demonstrate the unique mechanism of colossal negative magnetoresistance and provide pathways towards realizing topological electronic states in a large class of magnetic half-Heusler compounds.

5.
Phys Rev Lett ; 130(13): 136701, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067304

RESUMO

Dynamical spin fluctuations in magnets can be endowed with a slight bent toward left- or right-handed chirality by Dzyaloshinskii-Moriya interactions. However, little is known about the crucial role of lattice geometry on these chiral spin fluctuations and on fluctuation-related transport anomalies driven by the quantum-mechanical (Berry) phase of conduction electrons. Via thermoelectric Nernst effect and electric Hall effect experiments, we detect chiral spin fluctuations in the paramagnetic regime of a kagome lattice magnet; these signals are largely absent in a comparable triangular lattice magnet. Supported by Monte Carlo calculations, we identify lattices with at least two dissimilar plaquettes as most promising for Berry phase phenomena driven by thermal fluctuations in paramagnets.

6.
Nat Commun ; 14(1): 1260, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898999

RESUMO

Bose-Einstein condensation (BEC) in quantum magnets, where bosonic spin excitations condense into ordered ground states, is a realization of BEC in a thermodynamic limit. Although previous magnetic BEC studies have focused on magnets with small spins of S ≤ 1, larger spin systems potentially possess richer physics because of the multiple excitations on a single site level. Here, we show the evolution of the magnetic phase diagram of S = 3/2 quantum magnet Ba2CoGe2O7 when the averaged interaction J is controlled by a dilution of magnetic sites. By partial substitution of Co with nonmagnetic Zn, the magnetic order dome transforms into a double dome structure, which can be explained by three kinds of magnetic BECs with distinct excitations. Furthermore, we show the importance of the randomness effects induced by the quenched disorder: we discuss the relevance of geometrical percolation and Bose/Mott glass physics near the BEC quantum critical point.

7.
J Am Chem Soc ; 144(37): 16866-16871, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36066406

RESUMO

Configurational entropy can impact crystallization processes, tipping the scales between structures of nearly equal internal energy. Using alloyed single crystals of Gd2PdSi3 in the AlB2-type structure, we explore the formation of complex layer sequences made from alternating, two-dimensional triangular and honeycomb slabs. A four-period and an eight-period stacking sequence are found to be very close in internal energy, the latter being favored by entropy associated with covering the full configuration space of interlayer bonds. Possible consequences of polytype formation on magnetism in Gd2PdSi3 are discussed.

8.
Phys Rev E ; 105(6-2): 065301, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854523

RESUMO

In this study, we estimate the distribution of lattice model parameters based on Bayesian estimation using the dispersion relation spectral data of lattice vibration. The dispersion relation of lattice vibration is observed using inelastic scattering of neutrons or x rays and is used to analyze the speed of sound and interatomic force. However, the current analysis method of dispersion relation observation data in the field of experimental physics requires manually fitting parameters, so the analysis is costly and cannot effectively handle high-dimensional data and large amounts of data. Moreover, it is impossible to discuss the estimation accuracy with the conventional method. Therefore, we solve these problems by estimating the distribution of parameters using Bayesian inference. We propose a lattice model parameter estimation method that uses Bayesian inference with a physical observation stochastic process and determine the method's effectiveness using artificial data.

9.
Nat Commun ; 13(1): 1472, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354812

RESUMO

Magnetic skyrmions are topologically stable swirling spin textures with particle-like character, and have been intensively studied as a candidate of high-density information bit. While magnetic skyrmions were originally discovered in noncentrosymmetric systems with Dzyaloshinskii-Moriya interaction, recently a nanometric skyrmion lattice has also been reported for centrosymmetric rare-earth compounds, such as Gd2PdSi3 and GdRu2Si2. For the latter systems, a distinct skyrmion formation mechanism mediated by itinerant electrons has been proposed, and the search of a simpler model system allowing for a better understanding of their intricate magnetic phase diagram is highly demanded. Here, we report the discovery of square and rhombic lattices of nanometric skyrmions in a centrosymmetric binary compound EuAl4, by performing small-angle neutron and resonant elastic X-ray scattering experiments. Unlike previously reported centrosymmetric skyrmion-hosting materials, EuAl4 shows multiple-step reorientation of the fundamental magnetic modulation vector as a function of magnetic field, probably reflecting a delicate balance of associated itinerant-electron-mediated interactions. The present results demonstrate that a variety of distinctive skyrmion orders can be derived even in a simple centrosymmetric binary compound, which highlights rare-earth intermetallic systems as a promising platform to realize/control the competition of multiple topological magnetic phases in a single material.

10.
Sci Rep ; 12(1): 1044, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058482

RESUMO

A Laguerre-Gaussian (LG) vortex beam having a spiral wavefront can be characterized by its topological charge (TC). The TC gives the number of times that the beam phase passes through the interval [Formula: see text] following a closed loop surrounding the propagation axis. Here, the TC spectra of soft X-ray vortex beams are acquired using the in-line holography technique, where interference between vortex waves produced from a fork grating and divergent waves from a Fresnel zone plate is observed as a holographic image. The analyses revealed the phase distributions and the TC for the LG vortex waves, which reflects topological number of the fork gratings, as well as for the Hermite-Gaussian (HG) mode waves generated from the other gratings. We also conducted a simulation of the present technique for pair annihilation of topological defects in a magnetic texture. These results may pave the way for development of probes capable of characterizing the topological numbers of magnetic defects.

11.
Adv Sci (Weinh) ; 9(10): e2105452, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35088568

RESUMO

Magnetic skyrmion is a topologically stable particle-like swirling spin texture potentially suitable for high-density information bit, which was first observed in noncentrosymmetric magnets with Dzyaloshinskii-Moriya interaction. Recently, nanometric skyrmion has also been discovered in centrosymmetric rare-earth compounds, and the identification of their skyrmion formation mechanism and further search of nontrivial spin textures are highly demanded. Here, magnetic structures in a prototypical skyrmion-hosting centrosymmetric tetragonal magnet GdRu2 Si2 is exhaustively studied by performing the resonant X-ray scattering experiments. A rich variety of double-Q magnetic structures, including the antiferroic order of meron(half-skyrmion)/anti-meron-like textures with fractional local topological charges are identified. The observed intricate magnetic phase diagram is successfully reproduced by the theoretical framework considering the four-spin interaction mediated by itinerant electrons and magnetic anisotropy. The present results will contribute to the better understanding of the novel skyrmion formation mechanism in this centrosymmetric rare-earth compound, and suggest that itinerant electrons can ubiquitously host a variety of unique multiple-Q spin orders in a simple crystal lattice system.

12.
Sci Adv ; 7(52): eabl5381, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936456

RESUMO

While anomalous Hall effect (AHE) has been extensively studied in the past, efforts for realizing large Hall response have been mainly limited within intrinsic mechanism. Lately, however, a theory of extrinsic mechanism has predicted that magnetic scattering by spin cluster can induce large AHE even above magnetic ordering temperature, particularly in magnetic semiconductors with low carrier density, strong exchange coupling, and finite spin chirality. Here, we find out a new magnetic semiconductor EuAs, where Eu2+ ions with large magnetic moments form distorted triangular lattice. In addition to colossal magnetoresistance, EuAs exhibits large AHE with an anomalous Hall angle of 0.13 at temperatures far above antiferromagnetic ordering. As also demonstrated by model calculations, observed AHE can be explained by the spin cluster scattering in a hopping regime. Our findings shed light on magnetic semiconductors hosting topological spin textures, developing a field targeting diluted carriers strongly coupled to noncoplanar spin structures.

13.
Nat Commun ; 12(1): 6199, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707128

RESUMO

Local and low-dimensional structures, such as interfaces, domain walls and structural defects, may exhibit physical properties different from the bulk. Therein, a wide variety of local phases were discovered including conductive interfaces, sheet superconductivity, and magnetoelectric domain walls. The confinement of combined magnetic and electric orders to spatially selected regions may be particularly relevant for future technological applications because it may serve as basis of electrically controllable magnetic memory devices. However, direct observation of magnetoelectric low-dimensional structures cannot readily be done partly because of the lack of experimental techniques locally probing their physical nature. Here, we report an observation of multiferroic ribbon-like domains in a non-multiferroic environment in MnWO4. Using optical second harmonic generation imaging, we reveal that a multiferroic phase is stabilized by locally generated strain while the bulk magnetic structure is non-multiferroic. We further find that the confined multiferroic state retains domains with different directions of electric polarization and we demonstrate deterministic writing of a multiferroic state embedded in a non-multiferroic environment.

14.
Nat Commun ; 12(1): 5582, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552070

RESUMO

Recently found anomalous Hall, Nernst, magnetooptical Kerr, and spin Hall effects in the antiferromagnets Mn3X (X = Sn, Ge) are attracting much attention for spintronics and energy harvesting. Since these materials are antiferromagnets, the origin of these functionalities is expected to be different from that of conventional ferromagnets. Here, we report the observation of ferroic order of magnetic octupole in Mn3Sn by X-ray magnetic circular dichroism, which is only predicted theoretically so far. The observed signals are clearly decoupled with the behaviors of uniform magnetization, indicating that the present X-ray magnetic circular dichroism is not arising from the conventional magnetization. We have found that the appearance of this anomalous signal coincides with the time reversal symmetry broken cluster magnetic octupole order. Our study demonstrates that the exotic material functionalities are closely related to the multipole order, which can produce unconventional cross correlation functionalities.

15.
Proc Natl Acad Sci U S A ; 118(33)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34389668

RESUMO

The long-range order of noncoplanar magnetic textures with scalar spin chirality (SSC) can couple to conduction electrons to produce an additional (termed geometrical or topological) Hall effect. One such example is the Hall effect in the skyrmion lattice state with quantized SSC. An alternative route to attain a finite SSC is via the spin canting caused by thermal fluctuations in the vicinity of the ferromagnetic ordering transition. Here, we report that for a highly conducting ferromagnet with a two-dimensional array of spin trimers, the thermally generated SSC can give rise to a gigantic geometrical Hall conductivity even larger than the intrinsic anomalous Hall conductivity of the ground state. We also demonstrate that the SSC induced by thermal fluctuations leads to a strong response in the Nernst effect. A comparison of the sign and magnitude of fluctuation-Nernst and Hall responses in fundamental units indicates the need for a momentum-space picture to model these thermally induced signals.

16.
Angew Chem Int Ed Engl ; 60(26): 14350-14354, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33886136

RESUMO

Two-dimensional organic-inorganic hybrid perovskites (2D-OIHPs) are attracting interest due to their structural tunability and rich functional characteristics, such as ferroelectricity and ferromagnetism. Here, we report the chiral-polar ferromagnetic 2D-OIHP copper chlorides with discernable electric polarization in the inorganic layers. In these systems, the magneto-electric (ME) correlation has been clearly observed by measuring a magneto-electric directional anisotropy (MEA), in which an optical absorption coefficient changes with reversal of the light propagating direction. We have found that the MEA can be induced by a low magnetic field of about 50 mT, reflecting soft magnetic nature. The present results suggest a new paradigm for designing functional ME multiferroics, which effectively couples magnetic and electric properties.

17.
Sci Adv ; 7(16)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863720

RESUMO

Mirror symmetries are of particular importance because they are connected to fundamental properties and conservation laws. Spatial inversion and time reversal are typically associated to charge and spin phenomena, respectively. When both are broken, magnetoelectric cross-coupling can arise. In the optical regime, a difference between forward and backward propagation of light may result. Usually, this nonreciprocal response is small. We show that a giant nonreciprocal optical response can occur when transferring from linear to nonlinear optics, specifically second harmonic generation (SHG). CuB2O4 exhibits SHG transmission changes by almost 100% upon reversal of a magnetic field of just ±10 mT. The observed nonreciprocity results from an interference between magnetic-dipole and electric-dipole SHG. Although the former is inherently weaker than the latter, a resonantly enhanced magnetic-dipole transition has a comparable amplitude as a nonresonant electric-dipole transition, thus maximizing the nonreciprocity. Multiferroics and magnetoelectrics are an obvious materials platform to exhibit nonreciprocal nonlinear optical functionalities.

18.
Nat Mater ; 20(1): 5-6, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33340005
19.
Nat Commun ; 11(1): 5925, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230104

RESUMO

Magnetic skyrmions were thought to be stabilised only in inversion-symmetry breaking structures, but skyrmion lattices were recently discovered in inversion symmetric Gd-based compounds, spurring questions of the stabilisation mechanism. A natural consequence of a recent theoretical proposal, a coupling between itinerant electrons and localised magnetic moments, is that the skyrmions are amenable to detection using even non-magnetic probes such as spectroscopic-imaging scanning tunnelling microscopy (SI-STM). Here SI-STM observations of GdRu2Si2 reveal patterns in the local density of states that indeed vary with the underlying magnetic structures. These patterns are qualitatively reproduced by model calculations which assume exchange coupling between itinerant electrons and localised moments. These findings provide a clue to understand the skyrmion formation mechanism in GdRu2Si2.

20.
Phys Rev Lett ; 125(7): 076602, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857583

RESUMO

The topological Hall effect (THE) and its thermoelectric counterpart, the topological Nernst effect (TNE), are hallmarks of the skyrmion lattice phase (SkL). We observed the giant TNE of the SkL in centrosymmetric Gd_{2}PdSi_{3}, comparable in magnitude to the largest anomalous Nernst signals in ferromagnets. Significant enhancement (suppression) of the THE occurs when doping electrons (holes) to Gd_{2}PdSi_{3}. On the electron-doped side, the topological Hall conductivity approaches the characteristic threshold ∼1000 (Ω cm)^{-1} for the intrinsic regime. We use the filling-controlled samples to confirm Mott's relation between TNE and THE and discuss the importance of Gd-5d orbitals for transport in this compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...