Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 8(3): e14324, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32026654

RESUMO

SLC34A3/NPT2c/NaPi-2c/Npt2c is a growth-related NaPi cotransporter that mediates the uptake of renal sodium-dependent phosphate (Pi). Mutation of human NPT2c causes hereditary hypophosphatemic rickets with hypercalciuria. Mice with Npt2c knockout, however, exhibit normal Pi metabolism. To investigate the role of Npt2c in Pi homeostasis, we generated α-klotho-/- /Npt2c-/- (KL2cDKO) mice and analyzed Pi homeostasis. α-Klotho-/- (KLKO) mice exhibit hyperphosphatemia and markedly increased kidney Npt2c protein levels. Genetic disruption of Npt2c extended the lifespan of KLKO mice similar to that of α-Klotho-/- /Npt2a-/- mice. Adult KL2cDKO mice had hyperphosphatemia, but analysis of Pi metabolism revealed significantly decreased intestinal and renal Pi (re)absorption compared with KLKO mice. The 1,25-dihydroxy vitamin D3 concentration was not reduced in KL2cDKO mice compared with that in KLKO mice. The KL2cDKO mice had less severe soft tissue and vascular calcification compared with KLKO mice. Juvenile KL2cDKO mice had significantly reduced plasma Pi levels, but Pi metabolism was not changed. In Npt2cKO mice, plasma Pi levels began to decrease around the age of 15 days and significant hypophosphatemia developed within 21 days. The findings of the present study suggest that Npt2c contributes to regulating plasma Pi levels in the juvenile stage and affects Pi retention in the soft and vascular tissues in KLKO mice.


Assuntos
Envelhecimento/metabolismo , Glucuronidase/metabolismo , Fosfatos/sangue , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo , Animais , Fator de Crescimento de Fibroblastos 23 , Glucuronidase/genética , Homeostase , Absorção Intestinal , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Rim/crescimento & desenvolvimento , Rim/metabolismo , Proteínas Klotho , Masculino , Camundongos , Fosfatos/metabolismo , Reabsorção Renal , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética
2.
Clin Exp Nephrol ; 23(7): 898-907, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30895530

RESUMO

BACKGROUND: Injection of parathyroid hormone (PTH) rapidly stimulates renal Pi excretion, in part by downregulating NaPi-IIa (Npt2a/SLC34A1) and NaPi-IIc (Npt2c/SLC34A3) transporters. The mechanisms underlying the effects of PTH on NaPi-IIc are not fully elucidated. METHODS: We analyzed the effect of PTH on inorganic phosphate (Pi) reabsorption in Npt2a-/- mice to eliminate the influence of Npt2a on renal Pi reabsorption. In opossum kidney (OK) cells and Xenopus oocytes, we investigated the effect of NaPi-IIc transporter phosphorylation. Studies of mice with mutations of NaPi-IIc protein in which serine and threonine were replaced with either alanine (A), which prevents phosphorylation, or aspartic acid (D), which mimics the charged state of phosphorylated NaPi-IIc, were also performed to evaluate the involvement of phosphorylation in the regulation of transport function. RESULTS: The Npt2a-/- experiments showed that PTH administration rapidly inactivated NaPi-IIc function in the apical membrane of proximal tubular cells. Analysis of mutant proteins (S71, S138, T151, S174, T583) at putative protein kinase C sites, revealed that S138 markedly suppressed the function and cellular expression of mouse NaPi-IIc in Xenopus oocytes and OK cells. In addition, 138D had a short half-life compared with wild-type protein. CONCLUSIONS: The present study suggests that acute regulation of NaPi-IIc protein by PTH is involved in the inactivation of Na+-dependent Pi cotransporter activity and that phosphorylation of the transporter is involved in the rapid modification.


Assuntos
Túbulos Renais Proximais/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Fragmentos de Peptídeos/farmacologia , Fosfatos/metabolismo , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Reabsorção Renal/efeitos dos fármacos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo , Animais , Linhagem Celular , Feminino , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos Knockout , Gambás , Fosforilação , Estabilidade Proteica , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/deficiência , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Fatores de Tempo , Xenopus
3.
Clin Exp Nephrol ; 23(3): 313-324, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30317447

RESUMO

BACKGROUND: The role of Na+-dependent inorganic phosphate (Pi) transporters in the human kidney is not fully clarified. Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is caused by loss-of-function mutations in the IIc Na+-dependent Pi transporter (NPT2c/Npt2c/NaPi-IIc) gene. Another Na+-dependent type II transporter, (NPT2A/Npt2a/NaPi-IIa), is also important for renal Pi reabsorption in humans. In mice, Npt2c deletion does not lead to hypophosphatemia and rickets because Npt2a compensates for the impaired Pi reabsorption. To clarify the differences between mouse and human, we investigated the relation between NaPi-IIa and NaPi-IIc functions in opossum kidney (OK) cells. METHODS: We cloned NaPi-IIc from OK cells and created opossum NaPi-IIc (oNaPi-IIc) antibodies. We used oNaPi-IIc small interference (si)RNA and investigated the role of NaPi-IIc in Pi transport in OK cells. RESULTS: We cloned opossum kidney NaPi-IIc cDNAs encoding 622 amino acid proteins (variant1) and examined their pH- and sodium-dependency. The antibodies reacted specifically with 75-kDa and 150-kDa protein bands, and the siRNA of NaPi-IIc markedly suppressed endogenous oNaPi-IIc in OK cells. Treatment with siRNA significantly suppressed the expression of NaPi-4 (NaPi-IIa) protein and mRNA. oNaPi-IIc siRNA also suppressed Na+/H+ exchanger regulatory factor 1 expression in OK cells. CONCLUSION: These findings suggest that NaPi-IIc is important for the expression of NaPi-IIa (NaPi-4) protein in OK cells. Suppression of Npt2c may downregulate Npt2a function in HHRH patients.


Assuntos
Rim/metabolismo , Proteínas de Transporte de Fosfato/fisiologia , Fosfatos/metabolismo , Animais , Células Cultivadas , Raquitismo Hipofosfatêmico Familiar/etiologia , Humanos , Hipercalciúria/etiologia , Camundongos , Gambás , RNA Interferente Pequeno/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/fisiologia , Xenopus laevis
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(1 Pt 1): 011501, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18763955

RESUMO

Broadband dielectric measurements for triethyleneglycol (3EG)-water mixtures with various concentrations were performed in the frequency range of 10 muHz-10 GHz and in the temperature range of 130-298 K . For each mixture, the separation of the primary (alpha) and secondary processes is observed below the crossover temperature, TC. In the case of 80-100 wt% 3EG-water mixtures, the Kohlrausch-Williams-Watts-type primary process above TC continues to the alpha process below TC, and an additional secondary process is observed in the frequency range higher than that of the alpha process below TC. On the other hand, the primary process for 65 and 70 wt% 3EG-water mixtures above TC continues to the higher-frequency secondary process below TC, and an additional alpha process appears at a frequency lower than that of the secondary process. The contribution of water to relaxation processes is discussed, to clarify the molecular mechanism of the separation behavior. The characteristic separation behavior of the relaxation processes for high-water-content 3EG-water mixtures is due to the existence of excess water, which cannot move cooperatively with solute 3EG molecules below TC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...