Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pathobiology ; 87(6): 338-344, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33227798

RESUMO

BACKGROUND/AIM: The telomerase reverse transcriptase (TERT) promoter has a regulatory single nucleotide polymorphism (rSNP), rs2853669, and occasionally shows point mutations C228T and C250T. Although C228T and C250T have been well examined to increase TERT promoter activity and are known as risk factors for thyroid carcinoma, the significance of rs2853669 has not been well investigated. This study aimed to clarify the influence of rs2853669 on TERT promoter activity in thyroid carcinoma cells. MATERIALS: Seven of 8 examined thyroid cell lines had rs2853669, 5 had C228T, and 1 had C250T. RESULTS: Three papillary thyroid carcinoma cell lines, harboring both rs2853669 and C228T, showed higher TERT mRNA expression on real-time PCR than the other cell lines. Anaplastic thyroid carcinoma cell lines, in contrast, showed variable TERT mRNA expression depending on the combination of rs2853669, C228T, and C250T. Luciferase assays, performed to compare the influences of rs2853669, C228T, and C250T on TERT promoter activity in thyroid carcinoma, showed that rs2853669, as well as C228T, increased the promoter activity, and the combination of rs2853669 and C228T increased the promoter activity even more strongly than C228T alone. CONCLUSION: We conclude that the presence of rs2853669 within the TERT promoter could be as significant as the C228T mutation in thyroid carcinoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/fisiologia , Telomerase/genética , Neoplasias da Glândula Tireoide/genética , Linhagem Celular Tumoral , Humanos , Mutação
2.
Pathol Int ; 70(4): 217-223, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31943527

RESUMO

Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy. Point mutations in the telomerase reverse transcriptase (TERT) promoter, C228T and C250T and oncogene BRAFV600E have been investigated as risk factors for PTC. However, little research has been done on the single nucleotide polymorphism rs2853669 in the TERT promoter in PTC. This study aimed to clarify the clinicopathological significance of rs2853669 in Japanese patients with PTC. The genetic frequencies of rs2853669, C228T, C250T and BRAFV600E were investigated in 58 patients with PTC and compared with the clinicopathological parameters of PTC. rs2853669, C228T, C250T and BRAFV600E were found in 58.6%, 17.2%, 5.2% and 37.0% of the PTC patients, respectively. PTC with rs2853669 and C228T were associated only with tumor sizes larger than 2.0 cm (P < 0.05). Furthermore, the coexistence of rs2853669 and C228T was strongly associated with tumor size (P < 0.01), with an odds ratio of 6.4 (P < 0.05). We showed that rs2853669, as well as C228T, may be a risk factor for the aggressiveness of PTC, and the coexistence of these mutations might represent greater risk.


Assuntos
Telomerase/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas
3.
Pathol Int ; 70(4): 210-216, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31943533

RESUMO

Follicular thyroid neoplasm is a common tumor, and consists of follicular thyroid adenoma (FTA) and carcinoma (FTC). The mechanisms of tumor development of FTA and FTC are not well-understood. Single-nucleotide polymorphisms (SNPs) and point mutations in the telomerase reverse transcriptase (TERT) promoter have been associated with tumor development of many cancers. In order to clarify the significance of TERT promoter SNPs and mutations, including rs2853669 (-245T>C), C228T, and C250T, we analyzed 59 FTA patients and 19 FTC patients. Rs2853669 was found in 67.8% (40/59) and 57.9% (11/19) of FTAs and FTCs, respectively, and homozygous rs2853669 (CC) was more frequently found in FTC than in FTA. Furthermore, in FTA, rs2853669 was significantly associated with tumor size greater than 2.0 cm (P < 0.05). C228T was found in 5.1% and 36.8% of FTAs and FTCs, respectively. Frequencies of rs2853669 or/and C228T mutation were 71.2% in FTAs and 73.7%, in FTCs, and were significantly associated with larger tumor sizes in FTAs (P < 0.05). Rs2853669 is considered to be associated with tumor development in FTA and FTC.


Assuntos
Adenocarcinoma Folicular/genética , Adenoma/genética , Telomerase/genética , Neoplasias da Glândula Tireoide/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas
4.
Endocrinology ; 157(3): 1289-98, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26760117

RESUMO

Mechanisms of endocrine secretory granule (SG) formation in thyroid C cells and medullary thyroid cancer (MTC) cells have not been fully elucidated. Here we directly demonstrated that PROX1, a developmental homeobox gene, is transcriptionally involved in SG formation in MTC, which is derived from C cells. Analyses using gene expression databases on web sites revealed that, among thyroid cancer cells, MTC cells specifically and highly express PROX1 as well as several SG-forming molecule genes. Immunohistochemical analyses showed that in vivo MTC and C cells expressed PROX1, although follicular thyroid cancer and papillary thyroid cancer cells, normal follicular cells did not. Knockdown of PROX1 in an MTC cells reduced SGs detected by electron microscopy, and decreased expression of SG-related genes (chromogranin A, chromogranin B, secretogranin II, secretogranin III, synaptophysin, and carboxypeptidase E). Conversely, the introduction of a PROX1 transgene into a papillary thyroid cancer and anaplastic thyroid cancer cells induced the expression of SG-related genes. Reporter assays using the promoter sequence of chromogranin A showed that PROX1 activates the chromogranin A gene in addition to the known regulatory mechanisms, which are mediated via the cAMP response element binding protein and the repressor element 1-silencing transcription factor. Furthermore, chromatin immunoprecipitation-PCR assays demonstrated that PROX1 binds to the transcriptional regulatory element of the chromogranin A gene. In conclusion, PROX1 is an important regulator of endocrine SG formation in MTC cells.


Assuntos
Adenocarcinoma Folicular/genética , Adenoma/genética , Carcinoma Neuroendócrino/genética , Carcinoma/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Vesículas Secretórias/genética , Neoplasias da Glândula Tireoide/genética , Proteínas Supressoras de Tumor/genética , Adenocarcinoma Folicular/metabolismo , Adenoma/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carboxipeptidase H/genética , Carcinoma/metabolismo , Carcinoma Neuroendócrino/metabolismo , Carcinoma Papilar , Imunoprecipitação da Cromatina , Cromogranina A/genética , Cromogranina B/genética , Cromograninas/genética , Feminino , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Secretogranina II/genética , Sinaptofisina/genética , Câncer Papilífero da Tireoide , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo
5.
Pathol Int ; 62(4): 232-45, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22449227

RESUMO

Neural cell adhesion molecule 1 (NCAM1), synaptophysin (SYPT), and chromogranin A (CGA) are immunohistochemical markers for diagnosing lung neuroendocrine tumors (LNETs). However, the precise expression mechanisms have not been studied in enough detail. The purpose of the present study is to define the molecular mechanisms of NCAM1, SYPT, and CGA gene expressions, using cultivated lung cancer cells and focusing upon NeuroD1 (ND1), achaete-scute homolog-like 1 (ASCL1), and known transcription factors, repressor element 1 (RE1)-silencing transcription factor (REST) and c-AMP responsive element-binding protein (CREB). Promoter assays, chromatin immunoprecipitation, and transfection experiments revealed that ND1 activated NCAM1, that ASCL1 weakly upregulated SYPT expression, and that CGA expression was not regulated by ND1 or ASCL1. REST expression was restricted in non-small cell lung cancer (NSCLC) cells, and knockdown of REST could cause as much SYPT expression as in SCLC cells and weak CGA expression in NSCLC cells. However, CGA gene upregulation via CREB activation was not found in REST-lacking NSCLC cells, indicating the requirement of some additional mechanism for sufficient expression. These results suggest that NCAM1, SYPT and CGA expressions are differently regulated by neuroendocrine phenotype-specific transcription factors and provide a reason why NCAM1 and SYPT are frequently expressed in LNETs, irrespective of malignancy grade.


Assuntos
Antígeno CD56/genética , Carcinoma Neuroendócrino/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Cromogranina A/genética , Neoplasias Pulmonares/genética , Proteínas de Transporte Vesicular/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Antígeno CD56/metabolismo , Carcinoma Neuroendócrino/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Neoplasias Pulmonares/patologia , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sinaptofisina , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA