Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 12(2): 171, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568634

RESUMO

Global dysregulation of RNA splicing and imbalanced sphingolipid metabolism has emerged as promoters of cancer cell transformation. Here, we present specific signature of alternative splicing (AS) events of sphingolipid genes for each breast cancer subtype from the TCGA-BRCA dataset. We show that ceramide synthase 2 (CERS2) undergoes a unique cassette exon event specifically in Luminal B subtype tumors. We validated this exon 8 skipping event in Luminal B cancer cells compared to normal epithelial cells, and in patient-derived tumor tissues compared to matched normal tissues. Differential AS-based survival analysis shows that this AS event of CERS2 is a poor prognostic factor for Luminal B patients. As Exon 8 corresponds to catalytic Lag1p domain, overexpression of AS transcript of CERS2 in Luminal B cancer cells leads to a reduction in the level of very-long-chain ceramides compared to overexpression of protein-coding (PC) transcript of CERS2. We further demonstrate that this AS event-mediated decrease of very-long-chain ceramides leads to enhanced cancer cell proliferation and migration. Therefore, our results show subtype-specific AS of sphingolipid genes as a regulatory mechanism that deregulates sphingolipids like ceramides in breast tumors, and can be explored further as a suitable therapeutic target.


Assuntos
Processamento Alternativo , Neoplasias da Mama/enzimologia , Movimento Celular , Proliferação de Células , Ceramidas/metabolismo , Proteínas de Membrana/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proteínas de Membrana/genética , Invasividade Neoplásica , Transdução de Sinais , Esfingosina N-Aciltransferase/genética , Transcriptoma , Proteínas Supressoras de Tumor/genética
2.
Elife ; 62017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28895529

RESUMO

Messenger RNA function is controlled by the 3' poly(A) tail (PAT) and poly(A)-binding protein (PABP). La-related protein-4 (LARP4) binds poly(A) and PABP. LARP4 mRNA contains a translation-dependent, coding region determinant (CRD) of instability that limits its expression. Although the CRD comprises <10% of LARP4 codons, the mRNA levels vary >20 fold with synonymous CRD substitutions that accommodate tRNA dynamics. Separately, overexpression of the most limiting tRNA increases LARP4 levels and reveals its functional activity, net lengthening of the PATs of heterologous mRNAs with concomitant stabilization, including ribosomal protein (RP) mRNAs. Genetic deletion of cellular LARP4 decreases PAT length and RPmRNA stability. This LARP4 activity requires its PABP-interaction domain and the RNA-binding module which we show is sensitive to poly(A) 3'-termini, consistent with protection from deadenylation. The results indicate that LARP4 is a posttranscriptional regulator of ribosomal protein production in mammalian cells and suggest that this activity can be controlled by tRNA levels.


Assuntos
Autoantígenos/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/biossíntese , Animais , Autoantígenos/genética , Linhagem Celular , Humanos , Camundongos , Estabilidade de RNA , RNA Mensageiro/genética , RNA de Transferência/genética , Ribonucleoproteínas/genética , Proteínas Ribossômicas/genética , Antígeno SS-B
3.
Biomolecules ; 7(1)2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28282871

RESUMO

Transfer RNAs (tRNAs) contain sequence diversity beyond their anticodons and the large variety of nucleotide modifications found in all kingdoms of life. Some modifications stabilize structure and fit in the ribosome whereas those to the anticodon loop modulate messenger RNA (mRNA) decoding activity more directly. The identities of tRNAs with some universal anticodon loop modifications vary among distant and parallel species, likely to accommodate fine tuning for their translation systems. This plasticity in positions 34 (wobble) and 37 is reflected in codon use bias. Here, we review convergent evidence that suggest that expansion of the eukaryotic tRNAome was supported by its dedicated RNA polymerase III transcription system and coupling to the precursor-tRNA chaperone, La protein. We also review aspects of eukaryotic tRNAome evolution involving G34/A34 anticodon-sparing, relation to A34 modification to inosine, biased codon use and regulatory information in the redundancy (synonymous) component of the genetic code. We then review interdependent anticodon loop modifications involving position 37 in eukaryotes. This includes the eukaryote-specific tRNA modification, 3-methylcytidine-32 (m3C32) and the responsible gene, TRM140 and homologs which were duplicated and subspecialized for isoacceptor-specific substrates and dependence on i6A37 or t6A37. The genetics of tRNA function is relevant to health directly and as disease modifiers.


Assuntos
Anticódon/genética , Eucariotos/genética , RNA de Transferência/metabolismo , Eucariotos/metabolismo , Evolução Molecular , Conformação de Ácido Nucleico , RNA Polimerase III/metabolismo , RNA de Transferência/química , RNA de Transferência/genética
4.
RNA ; 22(9): 1400-10, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27354703

RESUMO

Post-transcriptional modifications of anticodon loop (ACL) nucleotides impact tRNA structure, affinity for the ribosome, and decoding activity, and these activities can be fine-tuned by interactions between nucleobases on either side of the anticodon. A recently discovered ACL modification circuit involving positions 32, 34, and 37 is disrupted by a human disease-associated mutation to the gene encoding a tRNA modification enzyme. We used tRNA-HydroSeq (-HySeq) to examine (3)methyl-cytidine-32 (m(3)C32), which is found in yeast only in the ACLs of tRNAs(Ser) and tRNAs(Thr) In contrast to that reported for Saccharomyces cerevisiae in which all m(3)C32 depends on a single gene, TRM140, the m(3)C32 of tRNAs(Ser) and tRNAs(Thr) of the fission yeast S. pombe, are each dependent on one of two related genes, trm140(+) and trm141(+), homologs of which are found in higher eukaryotes. Interestingly, mammals and other vertebrates contain a third homolog and also contain m(3)C at new sites, positions 32 on tRNAs(Arg) and C47:3 in the variable arm of tRNAs(Ser) More significantly, by examining S. pombe mutants deficient for other modifications, we found that m(3)C32 on the three tRNAs(Ser) that contain anticodon base A36, requires N(6)-isopentenyl modification of A37 (i(6)A37). This new C32-A37 ACL circuitry indicates that i(6)A37 is a pre- or corequisite for m(3)C32 on these tRNAs. Examination of the tRNA database suggests that such circuitry may be more expansive than observed here. The results emphasize two contemporary themes, that tRNA modifications are interconnected, and that some specific modifications on tRNAs of the same anticodon identity are species-specific.


Assuntos
Processamento Pós-Transcricional do RNA , RNA de Transferência de Serina/metabolismo , Schizosaccharomyces/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , RNA de Transferência de Serina/genética , Schizosaccharomyces/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo
5.
Trends Biochem Sci ; 41(6): 546-559, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27068803

RESUMO

RNA synthesis in eukaryotes is divided among three RNA polymerases (RNAPs). RNAP III transcribes hundreds of tRNA genes and fewer additional short RNA genes. We survey recent work on transcription by RNAP III including an atomic structure, mechanisms of action, interactions with chromatin and retroposons, and a conserved link between its activity and a tRNA modification that enhances mRNA decoding. Other new work suggests important mechanistic connections to oxidative stress, autoimmunity and cancer, embryonic stem cell pluripotency, and tissue-specific developmental effects. We consider that, for some of its complex functions, variation in RNAP III activity levels lead to nonuniform changes in tRNAs that can shift the translation profiles of key codon-biased mRNAs with resultant phenotypes or disease states.


Assuntos
Cromatina/química , Neoplasias/genética , RNA Polimerase III/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Autoimunidade/genética , Cromatina/metabolismo , Códon , Humanos , Mutação , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Biossíntese de Proteínas , RNA Polimerase III/química , RNA Polimerase III/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Retroelementos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
RNA ; 22(4): 583-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26857223

RESUMO

tRNA-isopentenyl transferases (IPTases) are highly conserved enzymes that form isopentenyl-N(6)-A37 (i6A37) on subsets of tRNAs, enhancing their translation activity. Nuclear-encoded IPTases modify select cytosolic (cy-) and mitochondrial (mt-) tRNAs. Mutation in human IPTase, TRIT1, causes disease phenotypes characteristic of mitochondrial translation deficiency due to mt-tRNA dysfunction. Deletion of the Schizosaccharomyces pombe IPTase (tit1-Δ) causes slow growth in glycerol, as well as in rapamycin, an inhibitor of TOR kinase that maintains metabolic homeostasis. Schizosaccharomyces pombe IPTase modifies three different cy-tRNAs(Ser) as well as cy-tRNA(Tyr), cy-tRNA(Trp), and mt-tRNA(Trp). We show that lower ATP levels in tit1-Δ relative to tit1(+) cells are also more decreased by an inhibitor of oxidative phosphorylation, indicative of mitochondrial dysfunction. Here we asked if the tit1-Δ phenotypes are due to hypomodification of cy-tRNA or mt-tRNA. A cytosol-specific IPTase that modifies cy-tRNA, but not mt-tRNA, fully rescues the tit1-Δ phenotypes. Moreover, overexpression of cy-tRNAs also rescues the phenotypes, and cy-tRNA(Tyr) alone substantially does so. Bioinformatics indicate that cy-tRNA(Tyr) is most limiting for codon demand in tit1-Δ cells and that the cytosolic mRNAs most loaded with Tyr codons encode carbon metabolilizing enzymes, many of which are known to localize to mitochondria. Thus, S. pombe i6A37 hypomodification-associated metabolic deficiency results from hypoactivity of cy-tRNA, mostly tRNA(Tyr), and unlike human TRIT1-deficiency does not impair mitochondrial translation due to mt-tRNA hypomodification. We discuss species-specific aspects of i6A37. Specifically relevant to mitochondria, we show that its hypermodified version, ms2i6A37 (2-methylthiolated), which occurs on certain mammalian mt-tRNAs (but not cy-tRNAs), is not found in yeast.


Assuntos
Mitocôndrias/metabolismo , RNA Fúngico/metabolismo , RNA de Transferência de Tirosina/metabolismo , Schizosaccharomyces/metabolismo , Animais , Códon , Camundongos , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética
7.
RNA Biol ; 13(2): 166-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26636900

RESUMO

Transcription termination delineates the 3' ends of transcripts, prevents otherwise runaway RNA polymerase (RNAP) from intruding into downstream genes and regulatory elements, and enables release of the RNAP for recycling. While other eukaryotic RNAPs require complex cis-signals and/or accessory factors to achieve these activities, RNAP III does so autonomously with high efficiency and precision at a simple oligo(dT) stretch of 5-6 bp. A basis for this high density cis-information is that both template and nontemplate strands of the RNAP III terminator carry distinct signals for different stages of termination. High-density cis-information is a feature of the RNAP III system that is also reflected by dual functionalities of the tRNA promoters as both DNA and RNA elements. We review emerging developments in RNAP III termination and single strand nontemplate DNA use by other RNAPs. Use of nontemplate signals by RNAPs and associated transcription factors may be prevalent in gene regulation.


Assuntos
RNA Polimerase III/genética , Terminação da Transcrição Genética , Transcrição Gênica , Eucariotos/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , RNA de Transferência/genética , Regiões Terminadoras Genéticas
8.
Mol Cell ; 58(6): 1124-32, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25959395

RESUMO

Understanding the mechanism of transcription termination by a eukaryotic RNA polymerase (RNAP) has been limited by lack of a characterizable intermediate that reflects transition from an elongation complex to a true termination event. While other multisubunit RNAPs require multipartite cis-signals and/or ancillary factors to mediate pausing and release of the nascent transcript from the clutches of these enzymes, RNAP III does so with precision and efficiency on a simple oligo(dT) tract, independent of other cis-elements or trans-factors. We report an RNAP III pre-termination complex that reveals termination mechanisms controlled by sequence-specific elements in the non-template strand. Furthermore, the TFIIF-like RNAP III subunit C37 is required for this function of the non-template strand signal. The results reveal the RNAP III terminator as an information-rich control element. While the template strand promotes destabilization via a weak oligo(rU:dA) hybrid, the non-template strand provides distinct sequence-specific destabilizing information through interactions with the C37 subunit.


Assuntos
RNA Polimerase III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Terminação da Transcrição Genética , Sequência de Bases , DNA Fúngico/genética , DNA Fúngico/metabolismo , Modelos Genéticos , Ligação Proteica , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , Transdução de Sinais/genética , Regiões Terminadoras Genéticas/genética
9.
Methods Mol Biol ; 1276: 185-98, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25665564

RESUMO

Eukaryotic RNA polymerase III (pol III) transcribes short noncoding RNA genes such as those encoding tRNAs, 5S rRNA, U6 snRNA, and a few others. As compared to its pol II counterpart, Pol III has several advantages, including the relative simplicity, stability, and more direct connectivity of its transcription machinery. Only two transcription factor complexes, TFIIIB and TFIIIC, are required to faithfully initiate and direct multiple rounds of transcription by pol III. Moreover, in contrast to an intricate multipartite mechanism of pol II termination, pol III termination is extremely simple, responsive to a monopartite signal (oligo T stretch on the nontemplate DNA strand) and mediated by a stably associated termination subcomplex of three integral subunits (Arimbasseri et al. Transcription 4(6), 2013). This makes pol III a valuable model for dissecting intrinsic molecular mechanisms of eukaryotic transcription termination. In this chapter, we provide protocols we adapted to study the biochemistry of transcription termination by S. cerevisiae pol III.


Assuntos
Biologia Molecular/métodos , RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/fisiologia , Terminação da Transcrição Genética/fisiologia , Técnicas de Cultura de Células , Cromatografia em Agarose , RNA Polimerase III/isolamento & purificação
10.
Gene ; 556(1): 35-50, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25447915

RESUMO

Suppressor tRNAs bear anticodon mutations that allow them to decode premature stop codons in metabolic marker gene mRNAs, that can be used as in vivo reporters of functional tRNA biogenesis. Here, we review key components of a suppressor tRNA system specific to Schizosaccharomyces pombe and its adaptations for use to study specific steps in tRNA biogenesis. Eukaryotic tRNA biogenesis begins with transcription initiation by RNA polymerase (pol) III. The nascent pre-tRNAs must undergo folding, 5' and 3' processing to remove the leader and trailer, nuclear export, and splicing if applicable, while multiple complex chemical modifications occur throughout the process. We review evidence that precursor-tRNA processing begins with transcription termination at the oligo(T) terminator element, which forms a 3' oligo(U) tract on the nascent RNA, a sequence-specific binding site for the RNA chaperone, La protein. The processing pathway bifurcates depending on a poorly understood property of pol III termination that determines the 3' oligo(U) length and therefore the affinity for La. We thus review the pol III termination process and the factors involved including advances using gene-specific random mutagenesis by dNTP analogs that identify key residues important for transcription termination in certain pol III subunits. The review ends with a 'technical approaches' section that includes a parts lists of suppressor-tRNA alleles, strains and plasmids, and graphic examples of its diverse uses.


Assuntos
RNA de Transferência/biossíntese , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Supressão Genética , Terminação da Transcrição Genética , Animais , Códon sem Sentido/genética , Humanos , Mutagênese Sítio-Dirigida/métodos , Processamento de Terminações 3' de RNA , RNA Polimerase III/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo
11.
PLoS Genet ; 11(12): e1005671, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26720005

RESUMO

Control of the differential abundance or activity of tRNAs can be important determinants of gene regulation. RNA polymerase (RNAP) III synthesizes all tRNAs in eukaryotes and it derepression is associated with cancer. Maf1 is a conserved general repressor of RNAP III under the control of the target of rapamycin (TOR) that acts to integrate transcriptional output and protein synthetic demand toward metabolic economy. Studies in budding yeast have indicated that the global tRNA gene activation that occurs with derepression of RNAP III via maf1-deletion is accompanied by a paradoxical loss of tRNA-mediated nonsense suppressor activity, manifested as an antisuppression phenotype, by an unknown mechanism. We show that maf1-antisuppression also occurs in the fission yeast S. pombe amidst general activation of RNAP III. We used tRNA-HydroSeq to document that little changes occurred in the relative levels of different tRNAs in maf1Δ cells. By contrast, the efficiency of N2,N2-dimethyl G26 (m(2)2G26) modification on certain tRNAs was decreased in response to maf1-deletion and associated with antisuppression, and was validated by other methods. Over-expression of Trm1, which produces m(2)2G26, reversed maf1-antisuppression. A model that emerges is that competition by increased tRNA levels in maf1Δ cells leads to m(2)2G26 hypomodification due to limiting Trm1, reducing the activity of suppressor-tRNASerUCA and accounting for antisuppression. Consistent with this, we show that RNAP III mutations associated with hypomyelinating leukodystrophy decrease tRNA transcription, increase m(2)2G26 efficiency and reverse antisuppression. Extending this more broadly, we show that a decrease in tRNA synthesis by treatment with rapamycin leads to increased m(2)2G26 modification and that this response is conserved among highly divergent yeasts and human cells.


Assuntos
RNA Polimerase III/metabolismo , RNA de Transferência/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , tRNA Metiltransferases/metabolismo , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Células HEK293/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Mutação , RNA Polimerase III/genética , RNA de Transferência/biossíntese , RNA de Transferência de Serina/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Sirolimo/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , tRNA Metiltransferases/genética
12.
Science ; 345(6196): 524, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25082694

RESUMO

Nielsen et al. (Reports, 28 June 2013, p. 1577) characterized their RNA polymerase III (Pol III) preparation and concluded that it requires an RNA hairpin/duplex structure for terminating transcription. We could not corroborate their findings using bona fide Pol III from two laboratory sources. We show that Pol III efficiently terminates transcription in the absence of a hairpin/duplex in vitro and in vivo.


Assuntos
RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/enzimologia , Terminação da Transcrição Genética
13.
Transcription ; 5(1): e27639, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25764110

RESUMO

In eukaryotes, RNA polymerase (RNAP) III transcribes hundreds of genes for tRNAs and 5S rRNA, among others, which share similar promoters and stable transcription initiation complexes (TIC), which support rapid RNAP III recycling. In contrast, RNAP II transcribes a large number of genes with highly variable promoters and interacting factors, which exert fine regulatory control over TIC lability and modifications of RNAP II at different transitional points in the transcription cycle. We review data that illustrate a relatively smooth continuity of RNAP III initiation-elongation-termination and reinitiation toward its function to produce high levels of tRNAs and other RNAs that support growth and development.


Assuntos
Modelos Genéticos , Modelos Moleculares , RNA Polimerase III/fisiologia , RNA Polimerase II/fisiologia , Iniciação da Transcrição Genética , Terminação da Transcrição Genética , Células Eucarióticas/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , Fatores de Transcrição TFII/fisiologia , Fatores de Transcrição TFIII/fisiologia
14.
Genome Biol ; 14(10): 137, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24176203

RESUMO

Integral nuclear pore proteins associate with subsets of snoRNA and tRNA genes transcribed by RNA polymerase III and promote 3' transcript processing in nematodes.


Assuntos
Caenorhabditis elegans/genética , Poro Nuclear/genética , RNA Polimerase III/genética , Transcrição Gênica , Animais
15.
Mol Cell Biol ; 33(8): 1571-81, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23401852

RESUMO

Transcription termination by RNA polymerase (Pol) III serves multiple purposes; it delimits interference with downstream genes, forms 3' oligo(U) binding sites for the posttranscriptional processing factor, La protein, and resets the polymerase complex for reinitiation. Although an interplay of several Pol III subunits is known to collectively control these activities, how they affect molecular function of the active center during termination is incompletely understood. We have approached this using immobilized Pol III-nucleic acid scaffolds to examine the two major components of termination, transcription pausing and RNA release. This allowed us to distinguish two mechanisms of termination by isolated Saccharomyces cerevisiae Pol III. A core mechanism can operate in the absence of C53/37 and C11 subunits but requires synthesis of 8 or more 3' U nucleotides, apparently reflecting inherent sensitivity to an oligo(rU·dA) hybrid that is the termination signal proper. The holoenzyme mechanism requires fewer U nucleotides but uses C53/37 and C11 to slow elongation and prevent terminator arrest. N-terminal truncation of C53 or point mutations that disable the cleavage activity of C11 impair their antiarrest activities. The data are consistent with a model in which C53, C37, and C11 activities are functionally integrated with the active center of Pol III during termination.


Assuntos
RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/enzimologia , Terminação da Transcrição Genética , Holoenzimas/genética , Holoenzimas/metabolismo , RNA Polimerase III/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Regiões Terminadoras Genéticas , Transcrição Gênica
16.
Biochim Biophys Acta ; 1829(3-4): 318-30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23099421

RESUMO

RNA polymerase (pol) III transcribes a multitude of tRNA and 5S rRNA genes as well as other small RNA genes distributed through the genome. By being sequence-specific, precise and efficient, transcription termination by pol III not only defines the 3' end of the nascent RNA which directs subsequent association with the stabilizing La protein, it also prevents transcription into downstream DNA and promotes efficient recycling. Each of the RNA polymerases appears to have evolved unique mechanisms to initiate the process of termination in response to different types of termination signals. However, in eukaryotes much less is known about the final stage of termination, destabilization of the elongation complex with release of the RNA and DNA from the polymerase active center. By comparison to pols I and II, pol III exhibits the most direct coupling of the initial and final stages of termination, both of which occur at a short oligo(dT) tract on the non-template strand (dA on the template) of the DNA. While pol III termination is autonomous involving the core subunits C2 and probably C1, it also involves subunits C11, C37 and C53, which act on the pol III catalytic center and exhibit homology to the pol II elongation factor TFIIS and TFIIFα/ß respectively. Here we compile knowledge of pol III termination and associate mutations that affect this process with structural elements of the polymerase that illustrate the importance of C53/37 both at its docking site on the pol III lobe and in the active center. The models suggest that some of these features may apply to the other eukaryotic pols. This article is part of a Special Issue entitled: Transcription by Odd Pols.


Assuntos
RNA Polimerase III/metabolismo , Terminação da Transcrição Genética , Animais , Sítios de Ligação , Domínio Catalítico , Eucariotos/genética , Eucariotos/metabolismo , Humanos , Subunidades Proteicas , RNA Polimerase III/química , Regiões Terminadoras Genéticas , Fatores de Transcrição TFIII/metabolismo , Fatores de Elongação da Transcrição/metabolismo
17.
Nucleic Acids Res ; 39(14): 6100-13, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21450810

RESUMO

RNA polymerase III recognizes and pauses at its terminator, an oligo(dT) tract in non-template DNA, terminates 3' oligo(rU) synthesis within this sequence, and releases the RNA. The pol III subunit Rpc11p (C11) mediates RNA 3'-5' cleavage in the catalytic center of pol III during pausing. The amino and carboxyl regions of C11 are homologous to domains of the pol II subunit Rpb9p, and the pol II elongation and RNA cleavage factor, TFIIS, respectively. We isolated C11 mutants from Schizosaccharomyces pombe that cause pol III to readthrough terminators in vivo. Mutant RNA confirmed the presence of terminator readthrough transcripts. A predominant mutation site, F32, resides in the C11 Rpb9-like domain. Another mutagenic approach confirmed the F32 mutation and also isolated I34 and Y30 mutants. Modeling Y30, F32 and I34 of C11 in available cryoEM pol III structures predicts a hydrophobic patch that may interface with C53/37. Another termination mutant, Rpc2-T455I, appears to reside internally, near the RNA-DNA hybrid. We show that the Rpb9 and TFIIS homologous mutants of C11 reflect distinct activities, that differentially affect terminator recognition and RNA 3' cleavage. We propose that these C11 domains integrate action at the upper jaw and center of pol III during termination.


Assuntos
RNA Polimerase III/química , RNA Polimerase III/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Regiões Terminadoras Genéticas , Transcrição Gênica , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Fenótipo , Mutação Puntual , Poli T/química , Poli T/metabolismo , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Polimerase III/genética , RNA de Transferência/genética , Proteínas de Saccharomyces cerevisiae/química , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...