Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214946

RESUMO

Silver nanoparticles (NPs) on glass substrates were obtained by a solid-state thermal dewetting (SSD) process using vacuum-evaporated-silver precursor layers. An exhaustive investigation of the morphological, structural, and surface chemistry properties by systematically controlling the precursor film thickness, annealing temperature, and time was conducted. Thin silver films with thicknesses of 40 and 80 nm were deposited and annealed in air by applying a combined heat-up+constant temperature-time program. Temperatures from 300 to 500 °C and times from 0 to 50 min were assayed. SSD promoted the morphological modification of the films, leading to the Ag NPs having a discrete structure. The size, shape, surface density, and inter-nanoparticle distance of the nanoparticles depended on the initial film thickness, annealing temperature, and time, exhibiting a cubic silver structure with a (111) preferred crystallographic orientation. The prepared NPs were found to be highly enriched in the Ag{111}/Ag{110}/Ag{100} equilibrium facets. SSD not only promotes NP formation but also promotes the partial oxidation from Ag to AgO at the surface level. AgO was detected on the surface around the nanoparticles synthesized at 500 °C. Overall, a broad framework has been established that connects process factors to distinguish resultant Ag NP features in order to develop unique silver nanoparticles for specific applications.

2.
J Phys Condens Matter ; 33(18)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33690192

RESUMO

In this work,ab initiocalculations were performed in order to study the vibrational spectra of the Bi2Sr2CaCu2O8(Bi2212) compound. A structural modulation correction on some atomic positions, producing a distorted structure with lower symmetry, is used for the calculation. We argue that this correction allows to account for an average effect of the incommensurate superstructure, generating a more accurate representation of the real unit cell observed in this compound. A complete and conclusive vibrational assignment is performed, discussing the correspondences with previous experimental and theoretical reports. A brief analysis of the electronic density of states and band structure comparing the tetragonal and distorted unit cell is also included.

3.
ACS Appl Mater Interfaces ; 10(24): 20938-20949, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29808672

RESUMO

Multilayered structures are a promising route to tailor electronic, magnetic, optical, and/or mechanical properties and durability of functional materials. Sputter deposition at room temperature, being an out-of-equilibrium process, introduces structural defects and confers to these nanosystems an intrinsic thermodynamical instability. As-deposited materials exhibit a large amount of internal atomic displacements within each constituent block as well as severe interface roughness between different layers. To access and characterize the internal multilayer disorder and its thermal evolution, X-ray diffraction investigation and analysis are performed systematically at differently grown Ag-Ge/aluminum nitride (AlN) multilayers (co-deposited, sequentially deposited with and without radio frequency (RF) bias) samples and after high-temperature annealing treatment. We report here on model calculations based on a kinematic formalism describing the displacement disorder both within the multilayer blocks and at the interfaces to reproduce the experimental X-ray diffraction intensities. Mixing and displacements at the interface are found to be considerably reduced after thermal treatment for co- and sequentially deposited Ag-Ge/AlN samples. The application of a RF bias during the deposition causes the highest interface mixing and introduces random intercalates in the AlN layers. X-ray analysis is contrasted to transmission electron microscopy pictures to validate the approach.

4.
Phys Rev Lett ; 98(26): 268102, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17678131

RESUMO

We analyze the structure of Haliotis rufescens nacre, or mother-of-pearl, using synchrotron spectromicroscopy and x-ray absorption near-edge structure spectroscopy. We observe imaging contrast between adjacent individual nacre tablets, arising because different tablets have different crystal orientations with respect to the radiation's polarization vector. Comparing previous data and our new data with models for columnar nacre growth, we find the data are most consistent with a model in which nacre tablets are nucleated by randomly distributed sites in the organic matrix layers.


Assuntos
Biofísica/métodos , Carbonato de Cálcio/química , Físico-Química/métodos , Animais , Calcificação Fisiológica , Cristalização , Moluscos , Oxigênio/química , Síncrotrons , Comprimidos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...