Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38722343

RESUMO

Nicotine, a pervasive global environmental pollutant, is released throughout every phase of the tobacco's life cycle. This study examined the probable ameliorative role of Chlorella vulgaris (ChV) extract against nicotine (NIC)-induced hepatic injury in Ehrlich ascites carcinoma (EAC) bearing female Swiss mice. Sixty female Swiss mice were assigned to four equal groups orally gavaged 2% saccharin 0.2 mL/mouse (control group), orally intubated 100 mg ChV /kg (ChV group), orally intubated 100 µg/mL NIC in 2% saccharin (NIC group), and orally intubated NIC + ChV as in group 3 and 2 (NIC+ChV group). The dosing was daily for 4 weeks. Mice from all experimental groups were then inoculated intraperitoneally with viable tumor cells 2.5 × 106 (0.2 mL/mouse) in the fourth week, and the treatments were extended for another 2 weeks. The results have shown that NIC exposure significantly altered the serum levels of liver function indices, lipid profile, LDH, and ALP in the NIC-exposed group. NIC administration significantly increased hepatic inflammation, lipid peroxidation, and DNA damage-related biomarkers but reduced antioxidant enzyme activities. NIC exposure downregulated SOD1, SOD2, CAT, GPX1, and GPX2 but upregulated NF-κB hepatic gene expression. Notably, the presence of the EAC cells outside the liver was common in all mice groups. Liver tissue of the NIC-exposed group showed multifocal expansion of hepatic sinusoids by neoplastic cells. However, with no evidence of considerable infiltration of EAC cells inside the sinusoids or in periportal areas in the NIC + ChV groups. NIC significantly altered caspase-3, Bax, and BcL2 hepatic immune expression. Interestingly, ChV administration significantly mitigates NIC-induced alterations in hepatic function indices, lipid profile, and the mRNA expression of antioxidant and NF-κB genes and regulates the caspase-3, Bax, and BcL2 immunostaining. Finally, the in vivo protective outcomes of ChV against NIC-induced hepatic injury combined with EAC in female Swiss mice could suggest their helpful role for cancer patients who are directly or indirectly exposed to NIC daily.

3.
Fish Shellfish Immunol ; 148: 109496, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461875

RESUMO

Using the unique structures found in natural materials to produce new antibacterial drugs is crucial. Actinobacteria is well-known for its ability to produce naturally occurring chemicals with a variety of structural features that can be used as weapons against infectious bacteria. In the present study, the Streptomyces coeruleorubidus metabolites were characterized and their efficacy in suppressing Streptococcus agalactiae growth was carried out both in vitro and in vivo. The metabolites of S. coeruleorubidus were purified and identified as octasiloxane-hexadecamethyl (OHM). In vivo antibacterial activity of OHM revealed an inhibitory minimum concentration value of 0.5 µg/ml against S. agalactiae and induced ultrastructural cell changes revealed by scanning electron microscope. The safe concentration of OHM was determined as 0.8 mg/L for Nile tilapia. Four in vivo treatments were treated with 0 and 0.8 mg/L OHM and with or without challenge by S. agalactiae (1 × 107 CFU/mL) named control, OHM, S. agalactiae, and S. agalactiae + OHM groups. The OHM treatment improved the survival of Nile tilapia by 33.33% than S. agalactiae challenge group. Waterborne OHM treatment significantly mitigated the deleterious effects of S. agalactiae on hematological, hepato-renal functions, stress indicators, and antioxidant balance. OHM significantly alleviated nitric oxide levels, complement 3, IgM, and lysozyme activity, downregulation of liver antioxidant genes expression in S. agalactiae group. Furthermore, the addition of OHM to challenged fish with S. agalactiae-significantly reversed dramatic negative regulation of inflammatory, apoptosis, and immune related gene expression (caspase-3, bax, pcna, tnf-α, ifn-γ, il-8 il-1ß, il-10, tgf-ß, and bcl-2 in the Nile tilapia spleen. Additionally, the damaged hepatic and splenic structure induced by bacterial infection was restored with OHM treatment. Finally, S. coeruleorubidus metabolites (mainly OHM) revealed in vitro and in vivo antibacterial activity and showed alleviated effects on the physiological status of S. agalactiae infected tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Streptomyces , Animais , Citocinas/genética , Streptococcus agalactiae/fisiologia , Antioxidantes , Antibacterianos/farmacologia , Estresse Oxidativo , Expressão Gênica , Apoptose
4.
Fish Physiol Biochem ; 50(3): 955-971, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38300372

RESUMO

The effects of long-term dietary supplementation with sandalwood (Santalum album L.) essential oil (SEO) was investigated on hemato-biochemical biomarkers, immune status, antioxidant capacity, and resistance against Staphylococcus aureus in Nile tilapia (Oreochromis niloticus). Five groups (with four replicates) of O. niloticus (12.60 ± 0.20 g) were fed diets supplemented with SEO at doses of 0, 0.5, 1.0, 2.0, and 4.0 mL/kg diet for 60 days. Results indicated a substantial increase in blood protein levels and lower serum cholesterol, cortisol, glucose, urea, creatinine levels and, transaminase activities of fish fed a 2.0-mL SEO/kg diet. Serum lysozyme activity, nitric oxide, complement-3 levels, and phagocytic activity were significantly improved in O. niloticus after 60 days of feeding SEO-supplemented diets. Dietary SEO at level of 2.0-mL SEO/kg diet increased the activities of SOD, CAT, and GPx, and decreased MDA levels in liver homogenate. In addition, dietary 2.0-mL SEO/kg diet significantly upregulated antioxidant genes expression (CAT, SOD, GPx, GST, and GSR) with downregulation of apoptotic genes (HSP70, TLR2, caspase-3, and PCNA) in the liver. Furthermore, SEO-enriched diets significantly down-regulated pro-inflammatory (TNF-α, IL-1ß, and IL-8) and up-regulated anti-inflammatory cytokine genes (TFG-ß and IL-10) in the spleen. Moreover, SEO fortification increased the relative percentage of survival against S. aureus challenge and regulated immune-antioxidant genes in the spleen after the challenge. Overall, the results revealed that long-term using SEO might strengthen the physiological performance, hepatic oxidant/antioxidant balance, innate immune response, and resistance of O. niloticus against bacterial infections.


Assuntos
Antioxidantes , Ciclídeos , Suplementos Nutricionais , Imunidade Inata , Óleos Voláteis , Animais , Ciclídeos/imunologia , Ciclídeos/genética , Ciclídeos/metabolismo , Imunidade Inata/efeitos dos fármacos , Antioxidantes/metabolismo , Óleos Voláteis/administração & dosagem , Óleos Voláteis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Ração Animal/análise , Dieta/veterinária , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Infecções Estafilocócicas/veterinária
5.
Pestic Biochem Physiol ; 198: 105725, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225080

RESUMO

This study aimed to examine the effects of gibberellic acid (GBA) on growth, hemato-biochemical parameters related to liver functions, digestive enzymes, and immunological response in Oreochromis niloticus. Besides, the probable underlying mechanisms were explored by assessing antioxidant, apoptotic, and immune-related gene expression. Furthermore, the likelihood of restoration following alpha-lipoic acid (LIP) dietary supplementation was explored. The fish (average initial weight 30.75 ± 0.46) were equally classified into four groups: the control group, the LIP group (fed on a basal diet plus 600 mg/kg of LIP), the GBA group (exposed to 150 mg GBA/L), and the GBA + LIP group (exposed to 150 mg GBA/L and fed a diet containing LIP and GBA) for 60 days. The study findings showed that LIP supplementation significantly reduced GBA's harmful effects on survival rate, growth, feed intake, digestive enzymes, and antioxidant balance. Moreover, the GBA exposure significantly increased liver enzymes, stress markers, cholesterol, and triglyceride levels, all of which were effectively mitigated by the supplementation of LIP. Additionally, LIP addition to fish diets significantly minimized the histopathological alterations in the livers of GBA-treated fish, including fatty change, sharply clear cytoplasm with nuclear displacement to the cell periphery, single-cell necrosis, vascular congestion, and intralobular hemorrhages. The GBA-induced reduction in lysozyme activity, complement C3, and nitric oxide levels, together with the downregulation of antioxidant genes (cat and sod), was significantly restored by dietary LIP. Meanwhile, adding LIP to the GBA-exposed fish diets significantly corrected the aberrant expression of hsp70, caspase- 3, P53, pcna, tnf-a, and il-1ß in O. niloticus liver. Conclusively, dietary LIP supplementation could mitigate the harmful effects of GBA exposure on fish growth and performance, physiological conditions, innate immunity, antioxidant capability, inflammatory response, and cell apoptosis.


Assuntos
Ciclídeos , Giberelinas , Ácido Tióctico , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Suplementos Nutricionais , Ácido Tióctico/farmacologia , Ácido Tióctico/metabolismo , Ciclídeos/genética , Estresse Oxidativo , Expressão Gênica
6.
Pestic Biochem Physiol ; 196: 105598, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945227

RESUMO

Globally, gibberellic acid (GA) is one of the extensively used plant growth regulators in agriculture. Yet, there is limited information about their toxicity to fish. Recently, alpha lipoic acid (ALA) has drawn much interest due to its antioxidant properties. This study was planned to determine whether ALA might protect Nile tilapia's kidneys from the toxic effects of GA and the probable underlying mechanisms. Thus, 240 Oreochromis niloticus fish (average initial weight 30.67 ± 0.57) were allocated into four groups received a basal diet or a basal diet supplemented with 600 mg/kg ALA or a basal diet but exposed to a GA (150 mg/L), or ALA-fortified diet and concurrently exposed to GA as previously described. After 60 days, hematological, oxidative stress, lipid peroxidation, stress indices, selected kidney toxic byproducts, histological investigations, and associated gene expression were assessed. Anemia, leukopenia, hypoproteinemia, and elevated kidney function indicators were noticed in the GA-treated group. Additionally, there were detectable cortisol, glucose, 8-OHdG, and MDA increases. However, there was a considerable drop in Cat, Sod, Gpx, GSH, and AChE levels. Structural damage to the kidneys was also identified. In the kidney of fish treated with GA, pro-inflammatory cytokines (tnfα, il-1ß), stress, and apoptotic genes (hsp70, pcna, caspase-3, and p53) genes were markedly up-regulated, while anti-oxidative (cat, sod) gene expression was downregulated. Conversely, adding ALA to the diet abolished the GA-induced changes in most of the markers mentioned above. Conclusively, ALA protects against GA-induced hematotoxicity, oxidative damage, and nephrotoxic effects in Nile tilapia fish.


Assuntos
Ciclídeos , Ácido Tióctico , Animais , Ácido Tióctico/farmacologia , Inflamação , Estresse Oxidativo , Antioxidantes/farmacologia , Apoptose , Expressão Gênica
7.
Saudi Pharm J ; 31(8): 101691, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37457368

RESUMO

This work explored the activities of bergamot oil nano-emulsion (NBG) in modulating blood biochemical parameters, redox status, immunity indices, inflammation markers, semen quality, testicular changes and the expression of HSPs genes in stressed rabbit bucks. Twenty-four mature rabbit bucks (5 months) were randomly divided into three groups; control group (NBG0) received 1 ml of distilled water, while the other two groups received NBG orally at doses of 50 and 100 mg/kg (bw) twice a week. The present study's findings revealed that treated groups had lower values of total and direct bilirubin, triglyceride, lactate dehydrogenase, and creatinine compared with NBG0 group (p < 0.05). NBG100 group recorded the greatest of total protein, albumin, GPx, T3 and T4 values as well as the lowest values of uric acid, MDA, and indirect bilirubin. Both treated groups showed significantly reduced 8-OhDG, Amyloid A, TLR 4, while significantly increased nitric oxide, IgA, IgM, TAC, and SOD levels. Semen characteristics such as volume, sperm count, sperm motility, normal sperm, and vitality were significantly higher in the NBG100 group compared to the NBG50 and NBG0 groups, whereas sperm abnormalities and dead sperm were significantly reduced. HSP70, HSP72, and HSPA9 gene overexpression showed that testicular integrity was maintained after buck received oral doses of 50 or 100 mg/kg of NBG. Existing findings indicate that oral administration of NBG improves heat tolerance in rabbit bucks primarily as e result of its antioxidant and anti-inflammatory effects.

8.
Antioxidants (Basel) ; 11(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36009242

RESUMO

In modern aquaculture, enriching Nile tilapia's diet with omega-3 poly-unsaturated fatty acids (PUFAs) not only plays an important role in its general health but also fortifies its fillet with omega-3-PUFAs. However, the major challenge affecting their delivery is their high instability due to oxidative deterioration. Thus, the prospective incorporation of omega-3-PUFAs into nanocarriers can enhance their stability and bioactivity. In this regard, the effect of reformulated omega-3-NPs was investigated on Nile tilapia's performance, flesh antioxidant stability, immunity, and disease resistance. Four fish groups supplemented with omega-3-PUFAs-loaded nanoparticles (omega-3 NPs) at levels of 0, 1, 2, and 3 g/kg diet and at the end of feeding trial fish challenged with Aeromonas hydrophila. Fish performance (weight gain and feed conversion) was improved in groups supplemented with omega-3-NPs (2 and 3 g/kg diet). The deposition of omega-3-PUFAs in fish flesh elevated with increasing dietary omega-3-NPs. Simultaneously the oxidative markers (H2O2, MDA, and reactive oxygen species) in fish flesh were reduced, especially with higher omega-3-NPs. Post-challenge, downregulation of IL-1ß, IL-6, IL-8, TNF-α, and caspase-1 were noticed after dietary supplementation of omega-3-NPs. Moreover, mRNA expression of autophagy-related genes was upregulated while the mTOR gene was downregulated with higher omega-3 NPs levels. Lower expression of A. hydrophila ahyI and ahyR genes were detected with omega-3 NPs supplementation. In conclusion, omega-3-NPs application can fortify tilapia flesh with omega-3-PUFAs and augment its performance, immunity, and disease resistance against Aeromonas hydrophila.

9.
Curr Stem Cell Res Ther ; 17(8): 750-755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34727865

RESUMO

Eukaryotic translation initiation factor 2 subunit 3 and structural gene Y-linked (Eif2s3y) gene, the gene encoding eIF2γ protein, is located on the mouse Y chromosome short arm. The Eif2s3y gene is globally expressed in all tissues and plays an important role in regulating global and gene-specific mRNA translation initiation. During the process of protein translation initiation, Eif2s3x (its homolog) and Eif2s3y encoded eIF2γ perform similar functions. However, it has been noticed that Eif2s3y plays a crucial role in spermatogenesis, including spermatogonia mitosis, meiosis, and spermiogenesis of spermatids, which may account for infertility. In the period of spermatogenesis, the role of Eif2s3x and Eif2s3y are not equivalent. Importance of Eif2s3y has been observed in ESC and implicated in several aspects, including the pluripotency state and the proliferation rate. Here, we discuss the functional significance of Eif2s3y in mouse spermatogenesis and self-renewal of ESCs.


Assuntos
Fator de Iniciação 2 em Procariotos , Espermatogênese , Animais , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Masculino , Camundongos , Fator de Iniciação 2 em Procariotos/genética , Espermatogênese/genética , Espermatogônias , Fatores de Transcrição/metabolismo , Cromossomo Y/metabolismo
10.
Aquat Toxicol ; 242: 106054, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923218

RESUMO

Contamination of aquatic systems with heavy metals (HM) is of great concern owing to their deleterious impact on living organism. The current research is focused on application of silica particles with new functionalized properties (magnetic silica; SiMag or Nanoporous silica; SiNPs) and their efficacy to mitigate lead (pb) toxicity in Nile tilapia. One thousand fingerlings were distributed: two control groups (negative; without pb toxicity (NC) positive (with pb toxicity) and other four groups received two silica sources (SiMag or SiNPs) with two levels (400 and 600 mg/kg diet) for 56 days then exposed to pb for 30 days. Before toxicity exposure, maximum growth, and most improved feed conversion ratio and biochemical parameters were noticed with higher SiMag or SiNPs levels. Serum antioxidant enzymes and their transcriptional levels in muscle and liver were boosted in groups received SiMag or SiNPs. After toxicity exposure, hematological and antioxidants biomarkers maintained at adequate levels in SiMag or SiNPs. Prominent reduction of residual pb in gills, liver, kidney, and muscle was observed in SiNPs then SiMag groups. Interestingly, the maximum down-regulation of P450, caspase-3 and HSP-70 and MT were observed in groups received 600 mg/kg diet of SiMag or SiNPs. The higher level of P53 in liver and gills was detected in PC, inversely reduced in SiMag or SiNPs. Severity of the histopathological alterations in examined organs greatly reduced in groups received SiMag or SiNPs, unlike it were induced in PC group. In conclusion, higher SiMag or SiNPs levels not only mitigate negatives impact of pb toxicity in fish but also ensure its safety for human consumption.


Assuntos
Ciclídeos , Chumbo , Nanopartículas , Dióxido de Silício , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Apoptose , Bioacumulação , Ciclídeos/metabolismo , Chumbo/toxicidade , Poluentes Químicos da Água/toxicidade
11.
Animals (Basel) ; 11(7)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206912

RESUMO

Appropriate skeletal muscle development in poultry is positively related to increasing its meat production. Synthetic peptides with growth hormone-boosting properties can intensify the effects of endogenous growth hormones. However, their effects on the mRNA and miRNA expression profiles that control muscle development post-hatching in broiler chicks is unclear. Thus, we evaluated the possible effects of synthetic growth hormone-boosting peptide (GHBP) inclusion on a chicken's growth rate, skeletal muscle development-related genes and myomiRs, serum biochemical parameters, and myofiber characteristics. A total of 400 one-day-old broiler chicks were divided into four groups supplied with GHBP at the levels of 0, 100, 200 and 300 µg/kg for 7 days post-hatching. The results showed that the highest levels of serum IGF-1 and GH at d 20 and d 38 post-hatching were found in the 200 µg/kg GHBP group. Targeted gene expression analysis in skeletal muscle revealed that the GHBP effect was more prominent at d 20 post-hatching. The maximum muscle development in the 200 µg/kg GHBP group was fostered by the upregulation of IGF-1, mTOR, myoD, and myogenin and the downregulation of myostatin and the Pax-3 and -7 genes compared to the control group. In parallel, muscle-specific myomiR analysis described upregulation of miR-27b and miR-499 and down-regulation of miR-1a, miR-133a, miR-133b, and miR-206 in both the 200 and 300 µg/kg GHBP groups. This was reflected in the weight gain of birds, which was increased by 17.3 and 11.2% in the 200 and 300 µg/kg GHBP groups, respectively, when compared with the control group. Moreover, the maximum improvement in the feed conversion ratio was achieved in the 200 µg/kg GHBP group. The myogenic effects of GHBP were also confirmed via studying myofiber characteristics, wherein the largest myofiber sizes and areas were achieved in the 200 µg/kg GHBP group. Overall, our findings indicated that administration of 200 µg/kg GHBP for broiler chicks could accelerate their muscle development by positively regulating muscle-specific mRNA and myomiR expression and reinforcing myofiber growth.

12.
Ecotoxicol Environ Saf ; 221: 112424, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34174736

RESUMO

Nanotechnology is used in a wide range of applications, including medical therapies that precisely target disease prevention and treatment. The current study aimed firstly, to synthesize selenium nanoparticles (SeNPs) in an eco-friendly manner using Moringa oleifera leaf extract (MOLE). Secondly, to compare the protective effects of green-synthesized MOLE-SeNPs conjugate and MOLE ethanolic extract as remedies for melamine (MEL) induced nephrotoxicity in male rats. One hundred and five male Sprague Dawley rats were divided into seven groups (n = 15), including 1st control, 2nd MOLE (800 mg/kg BW), 3rd SeNPs (0.5 mg/kg BW), 4th MOLE-SeNPs (200 µg/kg BW), 5th MEL (700 mg/kg BW), 6th MEL+MOLE, and 7th MEL+MOLE SeNPs. All groups were orally gavaged day after day for 28 days. SeNPs and the colloidal SeNPs were characterized by TEM, SEM, and DLS particle size. SeNPs showed an absorption peak at a wavelength of 530 nm, spherical shape, and an average size between 3.2 and 20 nm. Colloidal SeNPs absorption spectra were recorded between 400 and 700 nm with an average size of 3.3-17 nm. MEL-induced nephropathic alterations represented by a significant increase in serum creatinine, urea, blood urea nitrogen (BUN), renal TNFα, oxidative stress-related indices, and altered the relative mRNA expression of apoptosis-related genes Bax, Caspase-3, Bcl2, Fas, and FasL. MEL-induced array of nephrotoxic morphological changes, and up-regulated immune-expression of proliferating cell nuclear antigen (PCNA) and proliferation-associated nuclear antigen Ki-67. Administration of MOLE or MOLE-SeNPs significantly reversed MEL-induced renal function impairments, oxidative stress, histological alterations, modulation in the relative mRNA expression of apoptosis-related genes, and the immune-expression of renal PCNA and Ki-67. Conclusively, the green-synthesized MOLE-SeNPs and MOLE display nephron-protective properties against MEL-induced murine nephropathy. This study is the first to report these effects which were more pronounced in the MOLE group than the green biosynthesized MOLE-SeNPs conjugate group.


Assuntos
Nefropatias/tratamento farmacológico , Moringa oleifera , Nanopartículas/uso terapêutico , Extratos Vegetais/uso terapêutico , Substâncias Protetoras/uso terapêutico , Selênio/uso terapêutico , Animais , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta , Ratos Sprague-Dawley , Triazinas , Fator de Necrose Tumoral alfa/metabolismo
13.
Food Chem Toxicol ; 154: 112309, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34062221

RESUMO

The objective of the current study is to investigate the protective effect of Egyptian bee venom (BV) against methyl mercury chloride (MMC) induced blood-brain barrier (BBB) damage and neurobehavioral changes. Eighty male Sprague-Dawley rats were randomly grouped into 1st control (C), 2nd BV (0.5 mg/kg S/C for14 days), 3rd MMC (6.7 mg/kg orally/14 days), and 4th MMC + BV group. MMC exposure significantly altered rat cognitive behavior, auditory startle habituation, and swimming performance, increased the exploratory, grooming, and stereotypic behavior. MMC significantly impaired BBB integrity via induction of inflammation, oxidative stress, and down-regulation of tight junction proteins genes (TJPs) mRNA expression levels: Occludin (OCC), Claudins-5 (CLDN5), Zonula occludens-1 (ZO-1), while up-regulated the transforming growth factor-beta (TGF-ß) mRNA expression levels. MMC revealed a significantly higher percentage of IgG positive area ratio, a higher index ratio of Iba1, Sox10, and ss-DNA, while index ratio of CD31, neurofilament, and pan neuron showed a significant reduction. Administration of BV significantly regulates the MMC altered behavioral responses, TJPs relative mRNA expression, and the immune-expression markers for specific neural cell types. It could be concluded for the first time that BV retains a promising in vivo protection against MMC-induced BBB dysfunction and neurobehavioral toxicity.


Assuntos
Venenos de Abelha/farmacologia , Abelhas , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Proteínas de Junções Íntimas/metabolismo , Animais , Biomarcadores/metabolismo , Cerebelo/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley
14.
Sci Rep ; 11(1): 7742, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833292

RESUMO

The present study involved in vivo evaluation of the growth promoting effects of thymol and thymol nanoemulsion and their protection against Salmonella Typhimurium infection in broilers. One-day old 2400 chicks were randomly divided into eight groups; negative and positive control groups fed basal diet without additives and thymol and thymol nanoemulsion groups (0.25, 0.5 and 1% each). At d 23, all chicks except negative control were challenged with S. Typhimurium. Over the total growing period, birds fed 1% thymol nanoemulsion showed better growth performance even after S. Typhimurium challenge, which came parallel with upregulation of digestive enzyme genes (AMY2A, PNLIP and CCK). Additionally, higher levels of thymol nanoemulsion upregulated the expression of MUC-2, FABP2, IL-10, IgA and tight junction proteins genes and downregulated IL-2 and IL-6 genes expression. Moreover, 1% thymol nanoemulsion, and to lesser extent 0.5% thymol nanoemulsion and 1% thymol, corrected the histological alterations of cecum and liver postinfection. Finally, supplementation of 1% thymol, 0.5 and 1% thymol nanoemulsion led to increased Lactobacilli counts and decreased S. Typhimurium populations and downregulated invA gene expression postinfection. This first report of supplying thymol nanoemulsion in broiler diets proved that 1% nano-thymol is a potential growth promoting and antibacterial agent.


Assuntos
Galinhas/crescimento & desenvolvimento , Galinhas/microbiologia , Emulsões/química , Mucosa Intestinal/fisiologia , Nanotecnologia , Salmonella typhimurium/efeitos dos fármacos , Timol/farmacologia , Ração Animal , Animais , Ceco/microbiologia , Galinhas/fisiologia , Trato Gastrointestinal/efeitos dos fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade , Timol/química , Fatores de Virulência/genética
15.
Aquat Toxicol ; 230: 105702, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33264694

RESUMO

Although substantial knowledge of mercury toxicity in fish has been assembled; until now, studies investigating the toxic impacts in Nile tilapia (Oreochromis niloticus) following dietary exposure to organic methyl mercury (MeHg) are less prolific. Accordingly, the current study aimed to evaluate the impacts of MeHg on neurobehavioral and immune integrity in Nile tilapia after dietary exposure. Two hundred and twenty-five juvenile Nile tilapia (19.99 ± 0.33 g) were allocated into five groups in triplicates (15 fish/replicate). G1, G2, G3, G4, and G5. O. niloticus were fed corresponding basal diets containing 0, 0.5, 1, 1.5, and 2 mg/kg diet MeHg chloride (MeHgCl) daily for 30 days, zero value represented the control G1 group. The results showed that MeHg induced significant alterations in O. niloticus behavior, the swimming behavior was significantly decreased, while scratching, biting, and fin tugging behaviors were significantly augmented. Moreover; chasing, mouth pushing, and butting behaviors were significantly increased in all the exposed groups. MeHg significantly decreased brain acetylcholine esterase (AChE) and serum immunoglobulin M (IgM) levels in all the exposed groups. Meanwhile, serum levels of lysozyme (LYZ), nitric oxide (NO), superoxide dismutase (SOD) malondialdehyde (MDA), protein carbonyl (PCO), and 8 hydroxy 2 deoxyguanosine (8OH2dG) were significantly elevated in all the exposed groups except for serum reduced glutathione (GSH) content was significantly decreased implying oxidative stress (OS), lipid peroxidation (LPO), protein, DNA damage and impaired immune response of the exposed tilapia. MeHg significantly altered transcriptional expression of immune-related genes including (TNF-α, IL-1ß, and IL-8, and IL-10) in all the exposed groups. From the obtained outcomes, the present research is the premier to investigate that dietary MeHg exposure in O. niloticus significantly induced neurobehavioral and immune defense impairments in a dose-related manner. This study exhibits that dietary MeHg may pose a potential threat to the O. niloticus populations.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Ciclídeos , Exposição Dietética/efeitos adversos , Compostos de Metilmercúrio/toxicidade , Poluentes Químicos da Água/toxicidade , Ração Animal/análise , Animais , Biomarcadores/sangue , Encéfalo/imunologia , Encéfalo/patologia , Ciclídeos/imunologia , Ciclídeos/metabolismo , Citocinas/genética , Exposição Dietética/análise , Relação Dose-Resposta a Droga , Glutationa/sangue , Imunoglobulina M/sangue , Malondialdeído/sangue , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Estresse Oxidativo/imunologia , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia , Superóxido Dismutase/sangue
16.
Reprod Domest Anim ; 55(3): 405-417, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31985843

RESUMO

Male germline stem cells (mGSCs) can transmit genetic materials to the next generation and dedifferentiate into pluripotent stem cells. However, in livestock, mGSC lines are difficult to establish, because of the factors that affect their isolation and culture. The extracellular matrix serves as a substrate for attachment and affects the fate of these stem cells. Poly-L-lysine (PL), an extracellular matrix of choice, inhibits and/or kills cancer cells, and promotes the attachment of stem cells in culture. However, how it affects the characteristics and potentials of these stem cells in culture needs to be elucidated. Here, we isolated, enriched and cultured dairy goat mGSCs on five types of extracellular matrices. To explore the best extracellular matrix to use for culturing them, the characteristics and proliferation ability of the cells were determined. Results showed that the cells shared several characteristics with previously reported mGSCs, including the poor effect of PL on their proliferative and colony-forming abilities. Further examination showed upregulation of p53 expression in these cells, which could be inhibiting their proliferation. When a p53 inhibitor was included in the culture medium, it was confirmed to be responsible for the inhibition of proliferation in mGSCs. Optimal concentration of the inhibitor in the culture of these cells was 5 µM. Furthermore, addition of the p53 inhibitor increased the expression of the markers of self-renewal and cell cycle in goat mGSCs. In summary, suppressing p53 is beneficial for the proliferation of dairy goat mGSCs, cultured on PL.


Assuntos
Técnicas de Cultura de Células/veterinária , Células Germinativas/citologia , Cabras/fisiologia , Polilisina/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Técnicas de Cultura de Células/métodos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura , Matriz Extracelular/fisiologia , Células Germinativas/efeitos dos fármacos , Masculino , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
Front Vet Sci ; 7: 612063, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33415133

RESUMO

Phytogenic feed additives have been gaining considerable interest due to their ability to improve gut health and thereby performance of broiler chickens. The impact of Glycyrrhiza glabra (licorice) extract (GE) on expression of genes coding for tight junction proteins and gut protection and Campylobacter jejuni colonization in broilers has not been discussed until now. Thus, the current study assessed the effective dose of GE for maximum growth in broiler chickens, clear-cut molecular mechanisms related to integrity and health of intestine, and controlling C. jejuni colonization. Over a 35-day feeding period, a total of 500 Ross broiler chicks were allocated to five groups; the first group was fed a control diet without GE and the second group to the fifth group were fed a control diet with GE (0.25, 0.5, 1, and 2 g/kg of diet); each group comprised 100 chicks with 10 replicates (10 birds/replicate). Birds fed GE had an improved body weight gain and feed conversion ratio. Furthermore, the highest body weight gain was observed in the group that received 1 g/kg of GE (P < 0.05). The expression of genes coding for tight junction proteins [occludin and junctional adhesion molecules (JAM)] was upregulated in all groups supplemented with GE. Moreover, birds fed 1 g/kg of GE exhibited the maximum gene expression of occludin and JAM [0.2 and 0.3 fold change, respectively (P < 0.05)]. In relation to enterocyte protective genes [glucagon-like peptide (GLP-2) and fatty acid-binding protein (FABP-6)], use of GE significantly upregulated expression of GLP-2 gene with 0.8 fold change in 2 g/kg of the GE supplemented group (P < 0.05) while the expression of FABP-6 gene was not affected by GE supplementation (P > 0.05). After challenge with C. jejuni, the expression of mucin (MUC-2) gene was upregulated and the inflammatory markers such as Toll-like receptors (TLR-4) and interleukin (IL-1ß) were downregulated with increasing level of supplemented GE (P < 0.05). The mean log10 count of C. jejuni in cecal samples after 7 days post-infection by culture and real-time qPCR was decreased in groups fed GE in a dose-dependent manner (P < 0.05). In addition, the highest reduction of C. jejuni count in cecal samples by culture and real-time qPCR was observed in the group fed 2 g/kg of GE (2.58 and 2.28 log10 CFU/g, respectively). Results from this study suggested that G. glabra extract (1 g/kg) improved growth performance of broiler chickens, as well as influenced the maintenance of intestinal integrity and reduced C. jejuni shedding from infected birds.

18.
Res Vet Sci ; 126: 233-239, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31635840

RESUMO

In this study, canine adipose-derived mesenchymal stem cells (cADSCs) therapeutic potential was investigated in artificially induced acute liver injury model by CCl4 in canines. The primary cADSCs cells were cultured and then intravenously administered into the canine animal model. Six cross-breed dogs were divided into three groups including blank control group, CCl4 model group, CCl4 induced cADSCs transplantation group. The results showed that after intraperitoneal injection of CCl4 solution, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and Albumin (ALB) in peripheral blood of experimental canines confirmed the correct induction of acute liver injury. Moreover, the liver structure showed clear macroscopic damage. The cADSCs were homed in the liver of the administered animals. The AST, ALT and ALB in the peripheral blood rapidly decreased. H&E and PAS histological evaluation showed that both the structure of canine liver tissue and the ability to synthesize hepatic glycogen could be restored to the control level after cADSCs transplantation. Therefore, cADSCs can play a therapeutic role in the recovery of liver injury. Overall, this study demonstrates that the primary cADSCs transplantation into the acute liver injury model induced by intravenous injection can play a certain therapeutic role in the recovery of liver in canines. These results may provide a new treatment idea for acute liver disease in pets clinically.


Assuntos
Tecido Adiposo/fisiologia , Administração Intravenosa/veterinária , Doença Hepática Induzida por Substâncias e Drogas/veterinária , Células-Tronco Mesenquimais/fisiologia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Tetracloreto de Carbono/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/terapia , Cães , Feminino , Injeções Intraperitoneais/veterinária , Masculino
19.
Environ Sci Pollut Res Int ; 26(28): 29074-29084, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31392614

RESUMO

The present study aimed to examine the ameliorative effects of morin and rutin on the reproductive toxicity induced by titanium dioxide nanoparticles (TiO2NPs) in male rats. A total of seventy adult male Sprague-Dawley rats were randomly divided into seven groups, each comprising ten rats. Nanoreprotoxicity was induced by treating rats with TiO2NPs at a dosage of 300 mg/kg body weight for 30 days. Morin (30 mg/kg body weight) and rutin (100 mg/kg body weight) were co-administered with or without TiO2NPs to rats either individually or combined. Only distilled water was administered to the control group. The results showed that TiO2NPs enhanced oxidative stress, indicated by reduced levels of antioxidants such as superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) in testicular tissues, and increased levels of the lipid peroxidation marker malondialdehyde (MDA). TiO2NPs significantly reduced the levels of sex hormones (testosterone, FSH, and LH), reduced sperm motility, viability, and sperm cell count, and increased sperm abnormalities, in addition to damaging the testicular histological architecture. TiO2NPs resulted in the downregulation of 17ß-HSD and the upregulation of proapoptotic gene (Bax) transcripts in the testicular tissues. Conversely, morin and/or rutin had a protective effect on testicular tissue. They effectively counteracted TiO2NP-induced oxidative damage and morphological injury in the testis by conserving the endogenous antioxidant mechanisms and scavenging free radicals. Thus, we suggest that morin and rutin could be used to alleviate the toxicity and oxidative damage associated with TiO2NP intake.


Assuntos
Antioxidantes/farmacologia , Flavonoides/farmacologia , Nanopartículas/toxicidade , Rutina/farmacologia , Titânio/toxicidade , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Testículo/efeitos dos fármacos , Testosterona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...