Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indian J Cancer ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38155444

RESUMO

BACKGROUND: The integration of molecular features into the already existing pathological classification of endometrial carcinomas will offer significant prognostic information. As the literature search reveals, there are no studies from India that have classified these carcinomas based on molecular subtypes. The aim of the study was to classify endometrial carcinomas into four subtypes based on their molecular and immunohistochemical features and to find out the association of each of these molecular subtypes with the other pathological parameters. METHODS: A prospective study was done on 37 consecutive cases of fresh hysterectomy specimens, biopsy-proven as endometrial carcinomas between November 2019 and August 2020. Three immunohistochemical markers (p53, mismatch repair proteins,MutS homolog6 and Postmeiotic seggregation 2 respectively[MSH6, and PMS2]), along with DNA (deoxyribonucleic acid) sequencing of selected regions of the POLE gene was performed in each of the 37 cases. Endometrial carcinomas were subclassified into four subtypes, and the association of each of these four subtypes with the other pathological parameters was also explored. Statistical analysis was done using the IBM Statistical Package for the Social Science (SPSS) Version 20.0 software (IBM SPSS, USA). RESULTS: Among the 37 cases studied, eight (21.6%) cases were p53 abnormal, eight (21.6%) cases showed MMR-D (mismatch repair deficient), one case (2.7%) showed mutation of POLE, and 21 cases (56.8%) were assembled under p53 wild-type. Higher grade endometrial carcinomas showed more (80.0%) p53 abnormal (P < 0.001). All the p53 wild-type (100%) were of Type 1 endometrial carcinoma subtype (P = 0.001) and low-grade type (90.5%; P = 0.005). CONCLUSION: Our study confirms that the type of carcinoma and grade correlates with p53 expression, p53 abnormal being associated with higher grade and type 2 endometrial carcinomas, whereas p53 wild-type is associated with low-grade and type 1 endometrial carcinoma. There was only one case of the POLE subtype identifiable in our study.

2.
Ecancermedicalscience ; 15: 1302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34824625

RESUMO

The prevalence of microsatellite instability and deoxyribonucleic acid mismatch repair deficiency in colorectal adenocarcinoma (CRC) cases is higher in India compared to western populations. No major study on the molecular pathogenesis is currently available in the Indian population. We conducted a pilot study to explore the differences in molecular pathogenesis of microsatellite stable (MSS) and microsatellite unstable CRC from a tertiary care centre in Kerala, South India. Using Nanostring PanCancer panel assay in Stage II colorectal adenocarcinoma, tumour tissues (n = 11) were compared against normal colon tissues (n = 4). Differentially expressed (DE) genes were identified and super-imposed onto colon adenocarcinoma cohort of The Cancer Genome Atlas (TCGA) data (TCGA Colon Adenocarcinoma (TCGA COAD)), from the Genome Expression Profiling Interactive Analysis and Tumor Immune Estimation Resource (TIMER) to compare the gene associations. Significant DE genes were 59 out of 730 (false discovery rate adj. p-value < 0.05), 18 of which had a fold-change |FC(log2)| ≥ 2. On superimposition to TCGA COAD, 33 genes were significant in both TCGA and current study. ETV4 was expressed significantly higher in MSS with no immune cell infiltration. Other significant DE genes with high FC(log2), unique to the study were INHBA, COL1A1, COL11A1, COMP, SFRP4 and SPP1, which were clustered in STRING network analysis and correlated with tumour-infiltrating immune cells in TIMER, suggesting a specific interaction pathway. The preliminary study suggests a distinct pathogenesis of MSS CRC involving ETV4 in the Indian population and warrants further clinically extensive and high-dimensional expression studies.

3.
Indian Heart J ; 73(4): 506-510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34474768

RESUMO

MicroRNAs (miRNA) are prerequisite for cardiovascular functions. miRNA miR-208 b is a cardio-specific miRNA with tissue (atrial) levels elevated in atrial fibrillation (AFib) and blood levels significantly elevated in myocardial infarction. We calculated serum levels of miR-208 b in paroxysmal and persistent AFib, embolic cerebrovascular accident patients with AFib as possible etiology and controls. There was a statistically significant change of miR-208 b levels in paroxysmal (p = 0.044) and persistent (p = 0.040) AFib patients, but not for embolic CVA patients. miR-208 b could serve as a new serum marker for paroxysmal AFib.


Assuntos
Fibrilação Atrial , MicroRNAs , Infarto do Miocárdio , Fibrilação Atrial/diagnóstico , Biomarcadores , Átrios do Coração , Humanos , MicroRNAs/genética
4.
Aging Dis ; 12(4): 983-999, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34221543

RESUMO

Traumatic brain injury (TBI) is known to increase the susceptibility to various age-related neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Although the role of damaged mitochondrial electron transport chain (ETC) in the progression of AD and PD has been identified, its relationship with altered expression of neurodegenerative proteins has not been examined before. This study aimed to investigate 1) how TBI could affect mitochondrial ETC and neurodegeneration in rat brain regions related to behavioral alteration, and 2) if administration of the key mitochondrial substrate pyruvate can improve the outcome of mild TBI (mTBI). In a rat lateral fluid percussion injury model of mTBI, sodium pyruvate in sterile distilled water (1 g/kg body weight) was administered orally daily for 7 days. The protein expression of mitochondrial ETC enzymes, and neurodegeneration proteins in the hippocampus and cerebral cortex and was assessed on Day 7. The hippocampal and cortical expressions of ETC complex I, III, IV, V were significantly and variably impaired following mTBI. Pyruvate treatment altered ETC complex expression, reduced the nitrosyl stress and the MBP expression in the injured brain area, but increased the expression of the glial fibrillary acidic protein (GFAP) and Tau proteins. Pyruvate after mTBI augmented the Rotarod performance but decreased the horizontal and vertical open field locomotion activities and worsened neurobehavioural severity score, indicating a debilitating therapeutic effect on the acute phase of mTBI. These results suggest bidirectional neuroprotective and neurodegenerative modulating effects of pyruvate on TBI-induced alteration in mitochondrial activity and motor behavior. Pyruvate could potentially stimulate the proliferation of astrogliosis, and lactate acidosis, and caution should be exercised when used as a therapy in the acute phase of mTBI. More effective interventions targeted at multiple mechanisms are needed for the prevention and treatment of TBI-induced long-term neurodegeneration.

5.
BMC Cancer ; 20(1): 902, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32962681

RESUMO

BACKGROUND: High resolution melting curve analysis is a cost-effective rapid screening method for detection of somatic gene mutation. The performance characteristics of this technique has been explored previously, however, analytical parameters such as limit of detection of mutant allele fraction and total concentration of DNA, have not been addressed. The current study focuses on comparing the mutation detection efficiency of High-Resolution Melt Analysis (HRM) with Sanger Sequencing in somatic mutations of the EGFR gene in non-small cell lung cancer. METHODS: The minor allele fraction of somatic mutations was titrated against total DNA concentration using Sanger sequencing and HRM to determine the limit of detection. The mutant and wildtype allele fractions were validated by multiplex allele-specific real-time PCR. Somatic mutation detection efficiency, for exons 19 & 21 of the EGFR gene, was compared in 116 formalin fixed paraffin embedded tumor tissues, after screening 275 tumor tissues by Sanger sequencing. RESULTS: The limit of detection of minor allele fraction of exon 19 mutation was 1% with sequencing, and 0.25% with HRM, whereas for exon 21 mutation, 0.25% MAF was detected using both methods. Multiplex allele-specific real-time PCR revealed that the wildtype DNA did not impede the amplification of mutant allele in mixed DNA assays. All mutation positive samples detected by Sanger sequencing, were also detected by HRM. About 28% cases in exon 19 and 40% in exon 21, detected as mutated in HRM, were not detected by sequencing. Overall, sensitivity and specificity of HRM were found to be 100 and 67% respectively, and the negative predictive value was 100%, while positive predictive value was 80%. CONCLUSION: The comparative series study suggests that HRM is a modest initial screening test for somatic mutation detection of EGFR, which must further be confirmed by Sanger sequencing. With the modification of annealing temperature of initial PCR, the limit of detection of Sanger sequencing can be improved.


Assuntos
Análise Mutacional de DNA/métodos , Mutação , Neoplasias/genética , Alelos , DNA de Neoplasias/química , DNA de Neoplasias/genética , Receptores ErbB/genética , Éxons , Genes erbB-1 , Humanos , Neoplasias/enzimologia , Desnaturação de Ácido Nucleico , Estudos Prospectivos , Análise de Sequência de DNA/métodos , Temperatura
6.
Cancer Microenviron ; 11(2-3): 125-133, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30145722

RESUMO

Neurofibromatosis type 2 (NF-2) is associated with mainly three types of recurrent benign tumors restricted to the central nervous system: schwannoma, meningioma and ependymoma. The absence of the protein NF2/Merlin causes an uninterrupted cell proliferation cascade originating from an abnormal interaction between an extracellular mucopolysaccharide, hyaluronan (HA), and schwann cell surface CD44 receptor, which has been identified as one of the central causative factors for schwannoma. Most tumors in NF-2 have a predilection to originate from either arachnoid cap cells or schwann cells of the cisternal portion of nerve rootlets that share a continuous exposure to cerebrospinal fluid (CSF). We hypothesize that the CSF HA may play a role in tumorigenesis in NF-2. In a prospective analysis over a period of one year, the levels of medium to low molecular weight HA (LMW HA) was estimated in the CSF of three subjects with central schwannomas and compared against that of age-sex matched controls, using Cetyltrimethylammonium bromide coupled turbidimetric assay and found to be seventeen-fold higher in the schwannoma subjects compared to the controls. HA was observed to be actively secreted by cultured schwannoma cells isolated from tumor tissues commensurate with their proliferation rate. On cell viability index analysis to compare the cell proliferation of astrocytoma cells with LMW HA vs. oligomeric HA (OHA), we found a decrease in cell proliferation of up to 30% with OHA. The study provides initial evidence that CSF HA may have a central role in the tumorigenesis of schwannoma in NF-2.

7.
Drug Metab Pers Ther ; 33(1): 15-32, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29537211

RESUMO

Hyaluronan is a ubiquitous high-molecular weight polymer of repeated disaccharides of glucuronic acid and N-acetylglucosamine. It is a membrane-bound, viscous material extruded into the extracellular matrix after being synthesized in the cytoplasm by hyaluronan synthases complex and a regulated degradation by a group of enzymes called hyaluronidases. Hyaluronan has varied biological roles on many vital organismal functions, such as cellular and tissue development, migration and repair after injury or inflammation and cancer genesis. Hyaluronan in the tissue microenvironment is regulated by its concentration as well as the chain length of the polysaccharide. Many functions of hyaluronan are mediated by specific receptors at the cellular level, though its general physiochemical properties facilitate and coordinate many organ functions as well as in development. These fundamental characteristics of hyaluronan are reviewed, focusing on human biological context.


Assuntos
Ácido Hialurônico/metabolismo , Ácido Hialurônico/fisiologia , Regulação da Expressão Gênica , Humanos , Receptores de Hialuronatos/fisiologia , Modelos Biológicos , Isoformas de Proteínas/metabolismo
8.
J Neuroimmune Pharmacol ; 11(4): 763-773, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27562847

RESUMO

Melatonin and N-acetylserotonin (NAS) are tryptophan metabolites that have potent anti-oxidant, anti-inflammatory and neuroprotective properties in several animal models of neurological injury and disease including multiple sclerosis (MS). The therapeutic effect of NAS has not been reported previously in experimental autoimmune encephalomyelitis (EAE), a commonly used animal model of MS. Using a MOG-peptide induced EAE mouse model we examined the effects of melatonin and NAS on clinical score, inflammatory markers, free radical generation, and sparing of axons, oligodendrocytes and myelin. We found that NAS and melatonin reduced clinical scores when administered prior to or after symptom onset. This effect was more pronounced when melatonin and NAS were administrated prior to symptom onset whereby the appearance of motor symptoms was significantly delayed. Activated microglia and CD4+ T-cells were increased in the white matter of untreated EAE mice, with a return to near control levels after melatonin or NAS treatment. The expression of the NADPH oxidase component p67phox and inducible nitric oxide synthase (iNOS) was increased in the EAE mice as compared with controls, and both drug treated groups had significant reductions in their expression. Melatonin and NAS treatment significantly reduced the loss of mature oligodendrocytes, demyelination and axonal injury. Both compounds also significantly attenuated iNOS induction and reactive oxygen species (ROS) generation in lipopolysaccharide-activated microglia in culture. Our results show for the first time the therapeutic effects of NAS and confirm previous reports on the effectiveness of melatonin in the EAE model of MS.


Assuntos
Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Melatonina/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Serotonina/análogos & derivados , Animais , Células Cultivadas , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Serotonina/uso terapêutico , Resultado do Tratamento
9.
Fam Cancer ; 14(4): 585-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25952756

RESUMO

The general prevalence of the familial multi-organ tumor disorder, von Hippel-Lindau syndrome (VHL), was estimated to be 1 in 25-40,000 in western studies two decades back. Few studies were done in Indian sub-continent, amidst a surge in clinical reports on VHL specific manifestations. The syndrome is correlated with mutations of the gene VHL (located in Chr 3p25.3). We aimed to conduct a prospective case series describing phenotypic and genotypic characteristics in Indian population. The VHL-specific clinical and radiological features were collected from patients and family members. Genotypic changes such as deletion/duplication or point mutation in the VHL locus were identified using sequencing and MLPA. Thirty-one subjects, from fifteen families with diagnosed VHL, were included in the study. Multicystic pancreas was found in 71% (22/31), CNS hemangioblastoma in 68% (21/31), renal cell carcinoma and retinal angiomas in 23% (7/31) each, pheochromocytoma in 9.7% (3/31) of the population and endolymphatic sac tumor in one subject. Four families (9 subjects) had full length deletion of VHL, three families (4 subjects) had a deletion of exon 3, eight families (18 subjects) had different exonic, splice-site and intronic point mutations and one subject had a de novo in-frame indel in exon 1. Multicystic pancreas and CNS hemangioblastomas were the most common manifestations in our population. The phenotypic expression patterns in terms of tumorigenesis, tissue tropism and penetrance in comparison to the genotypic features were found to be different from previous correlative studies.


Assuntos
Biomarcadores Tumorais/genética , Mutação/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Doença de von Hippel-Lindau/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Seguimentos , Genótipo , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Fenótipo , Prognóstico , Estudos Prospectivos , Deleção de Sequência , Adulto Jovem , Doença de von Hippel-Lindau/epidemiologia
10.
J Neurosci Res ; 91(7): 934-42, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23633398

RESUMO

N-acetylaspartate (NAA) is recognized as a noninvasive diagnostic neuronal marker for a host of neuropsychiatric disorders using magnetic resonance spectroscopy (MRS). Numerous correlative clinical studies have found significant decreases in NAA levels in specific neuronal systems in an array of neuropsychiatric and substance-abuse disorders. We have recently identified the methamphetamine-induced neuronal protein known as "shati" as the NAA biosynthetic enzyme (aspartate N-acetyltransferase [Asp-NAT]; gene Nat8l). We have generated an Nat8l transgenic knockout mouse line to study the functions of NAA in the nervous system. We were unable to breed homozygous Nat8l knockout mice successfully for study and so used the heterozygous mice (Nat8l(+/-) ) for initial characterization. MRS analysis of the Nat8l(+/-) mice indicated significant reductions in NAA in cortex (-38%) and hypothalamus (-29%) compared with wild-type controls, which was confirmed using HPLC (-29% in forebrain). The level of the neuromodulator N-acetylaspartylglutamate (NAAG), which is synthesized from NAA, was decreased by 12% in forebrain as shown by HPLC. Behavioral analyses of the heterozygous animals indicated normal behavior in most respects but reduced vertical activity in open-field tests compared with age- and sex-matched wild-type mice of the same strain. Nat8l(+/-) mice also showed atypical locomotor responses to methamphetamine administration, suggesting that NAA is involved in modulating the hyperactivity effect of methamphetamine. These observations add to accumulating evidence suggesting that NAA has specific regulatory functional roles in mesolimbic and prefrontal neuronal pathways either directly or indirectly through impact on NAAG synthesis


Assuntos
Ácido Aspártico/análogos & derivados , Acetiltransferases/metabolismo , Análise de Variância , Animais , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Colina/metabolismo , Cromatografia Líquida de Alta Pressão , Dipeptídeos/deficiência , Dipeptídeos/genética , Dopaminérgicos/farmacologia , Comportamento Exploratório/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Locomoção/efeitos dos fármacos , Locomoção/genética , Espectroscopia de Ressonância Magnética , Metanfetamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Front Neuroenergetics ; 5: 11, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24421768

RESUMO

N-Acetylaspartate (NAA) is employed as a non-invasive marker for neuronal health using proton magnetic resonance spectroscopy (MRS). This utility is afforded by the fact that NAA is one of the most concentrated brain metabolites and that it produces the largest peak in MRS scans of the healthy human brain. NAA levels in the brain are reduced proportionately to the degree of tissue damage after traumatic brain injury (TBI) and the reductions parallel the reductions in ATP levels. Because NAA is the most concentrated acetylated metabolite in the brain, we have hypothesized that NAA acts in part as an extensive reservoir of acetate for acetyl coenzyme A synthesis. Therefore, the loss of NAA after TBI impairs acetyl coenzyme A dependent functions including energy derivation, lipid synthesis, and protein acetylation reactions in distinct ways in different cell populations. The enzymes involved in synthesizing and metabolizing NAA are predominantly expressed in neurons and oligodendrocytes, respectively, and therefore some proportion of NAA must be transferred between cell types before the acetate can be liberated, converted to acetyl coenzyme A and utilized. Studies have indicated that glucose metabolism in neurons is reduced, but that acetate metabolism in astrocytes is increased following TBI, possibly reflecting an increased role for non-glucose energy sources in response to injury. NAA can provide additional acetate for intercellular metabolite trafficking to maintain acetyl CoA levels after injury. Here we explore changes in NAA, acetate, and acetyl coenzyme A metabolism in response to brain injury.

12.
Glia ; 59(10): 1414-34, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21598311

RESUMO

Aspartoacylase (ASPA) catalyzes deacetylation of N-acetylaspartate (NAA) to generate acetate and aspartate. Mutations in the gene for ASPA lead to reduced acetate availability in the CNS during development resulting in the fatal leukodystrophy Canavan disease. Highly specific polyclonal antibodies to ASPA were used to examine CNS expression in adult rats. In white matter, ASPA expression was associated with oligodendrocyte cell bodies, nuclei, and some processes, but showed a dissimilar distribution pattern to myelin basic protein and oligodendrocyte specific protein. Microglia expressed ASPA in all CNS regions examined, as did epiplexus cells of the choroid plexus. Pial and ependymal cells and some endothelial cells were ASPA positive, as were unidentified cellular nuclei throughout the CNS. Astrocytes did not express ASPA in their cytoplasm. In some fiber pathways and nerves, particularly in the brainstem and spinal cord, the axoplasm of many neuronal fibers expressed ASPA, as did some neurons. Acetyl coenzyme A synthase immunoreactivity was also observed in the axoplasm of many of the same fiber pathways and nerves. All ASPA-immunoreactive elements were unstained in brain sections from tremor rats, an ASPA-null mutant. The strong expression of ASPA in oligodendrocyte cell bodies is consistent with a lipogenic role in myelination. Strong ASPA expression in cell nuclei is consistent with a role for NAA-derived acetate in nuclear acetylation reactions, including histone acetylation. Expression of ASPA in microglia may indicate a role in lipid synthesis in these cells, whereas expression in axons suggests that some neurons can both synthesize and catabolize NAA.


Assuntos
Amidoidrolases/metabolismo , Sistema Nervoso Central/enzimologia , Animais , Astrócitos/enzimologia , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Ratos , Tremor/enzimologia , Tremor/patologia
13.
J Comp Neurol ; 518(15): 2952-77, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20533355

RESUMO

Acetyl coenzyme A synthetase-1 (AceCS1) catalyzes the synthesis of acetyl coenzyme A from acetate and coenzyme A and is thought to play diverse roles ranging from fatty acid synthesis to gene regulation. By using an affinity-purified antibody generated against an 18-mer peptide sequence of AceCS1 and a polyclonal antibody directed against recombinant AceCS1 protein, we examined the expression of AceCS1 in the rat brain. AceCS1 immunoreactivity in the adult rat brain was present predominantly in cell nuclei, with only light to moderate cytoplasmic staining in some neurons, axons, and oligodendrocytes. Some nonneuronal cell nuclei were very strongly immunoreactive, including those of some oligodendrocytes, whereas neuronal nuclei ranged from unstained to moderately stained. Both antibodies stained some neuronal cell bodies and axons, especially in the hindbrain. AceCS1 immunoreactivity was stronger and more widespread in the brains of 18-day-old rats than in adults, with increased expression in oligodendrocytes and neurons, including cortical pyramidal cells. Expression of AceCS1 was substantially up-regulated in neurons throughout the brain after controlled cortical impact injury. The strong AceCS1 expression observed in the nuclei of CNS cells during brain development and after injury is consistent with a role in nuclear histone acetylation and therefore the regulation of chromatin structure and gene expression. The cytoplasmic staining observed in some oligodendrocytes, especially during postnatal brain development, suggests an additional role in CNS lipid synthesis and myelination. Neuronal and axonal localization implicates AceCS1 in cytoplasmic acetylation reactions in some neurons.


Assuntos
Encéfalo/enzimologia , Núcleo Celular/enzimologia , Coenzima A Ligases/biossíntese , Citoplasma/enzimologia , Animais , Western Blotting , Encéfalo/anatomia & histologia , Lesões Encefálicas/enzimologia , Córtex Cerebral/lesões , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Técnicas Imunoenzimáticas , Imuno-Histoquímica , Imunoprecipitação , Masculino , Dados de Sequência Molecular , Fibras Nervosas/enzimologia , Vias Neurais/citologia , Vias Neurais/enzimologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar
14.
J Inherit Metab Dis ; 33(3): 195-210, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20464498

RESUMO

Genetic mutations that severely diminish the activity of aspartoacylase (ASPA) result in the fatal brain dysmyelinating disorder, Canavan disease. There is no effective treatment. ASPA produces free acetate from the concentrated brain metabolite, N-acetylaspartate (NAA). Because acetyl coenzyme A is a key building block for lipid synthesis, we postulated that the inability to catabolize NAA leads to a brain acetate deficiency during a critical period of CNS development, impairing myelination and possibly other aspects of brain development. We tested the hypothesis that acetate supplementation during postnatal myelination would ameliorate the severe phenotype associated with ASPA deficiency using the tremor rat model of Canavan disease. Glyceryltriacetate (GTA) was administered orally to tremor rats starting 7 days after birth, and was continued in food and water after weaning. Motor function, myelin lipids, and brain vacuolation were analyzed in GTA-treated and untreated tremor rats. Significant improvements were observed in motor performance and myelin galactocerebroside content in tremor rats treated with GTA. Further, brain vacuolation was modestly reduced, and these reductions were positively correlated with improved motor performance. We also examined the expression of the acetyl coenzyme A synthesizing enzyme acetyl coenzyme A synthase 1 and found upregulation of expression in tremor rats, with a return to near normal expression levels in GTA-treated tremor rats. These results confirm the critical role played by NAA-derived acetate in brain myelination and development, and demonstrate the potential usefulness of acetate therapy for the treatment of Canavan disease.


Assuntos
Acetatos/uso terapêutico , Ácido Aspártico/análogos & derivados , Doença de Canavan/terapia , Mutação , Animais , Ácido Aspártico/metabolismo , Ácido Aspártico/uso terapêutico , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Heterozigoto , Lipídeos/química , Masculino , Bainha de Mielina/química , Fenótipo , Ratos , Resultado do Tratamento
15.
Brain Res ; 1335: 1-13, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20385109

RESUMO

N-acetylaspartate (NAA) is a concentrated, neuron-specific brain metabolite routinely used as a magnetic resonance spectroscopy marker for brain injury and disease. Despite decades of research, the functional roles of NAA remain unclear. Biochemical investigations over several decades have associated NAA with myelin lipid synthesis and energy metabolism. However, studies have been hampered by an inability to identify the gene for the NAA biosynthetic enzyme aspartate N-acetyltransferase (Asp-NAT). A very recent report has identified Nat8l as the gene encoding Asp-NAT and confirmed that the only child diagnosed with a lack of NAA on brain magnetic resonance spectrograms has a 19-bp deletion in this gene. Based on in vitro Nat8l expression studies the researchers concluded that many previous biochemical investigations have been technically flawed and that NAA may not be associated with brain energy or lipid metabolism. In studies done concurrently in our laboratory we have demonstrated via cloning, expression, specificity for acetylation of aspartate, responsiveness to methamphetamine treatment, molecular modeling and comparative immunolocalization that NAT8L is the NAA biosynthetic enzyme Asp-NAT. We conclude that NAA is a major storage and transport form of acetyl coenzyme A specific to the nervous system, thus linking it to both lipid synthesis and energy metabolism.


Assuntos
Acetilcoenzima A/metabolismo , Acetiltransferases/biossíntese , Ácido Aspártico/análogos & derivados , Metanfetamina/farmacologia , Neurônios/enzimologia , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Animais , Ácido Aspártico/biossíntese , Linhagem Celular , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/enzimologia , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato/genética
16.
J Neurotrauma ; 27(1): 293-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19803785

RESUMO

Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury.


Assuntos
Acetatos/farmacologia , Ácido Acético/metabolismo , Acetilcoenzima A/biossíntese , Lesões Encefálicas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Triacetina/farmacologia , Acetatos/uso terapêutico , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Masculino , Lipídeos de Membrana/biossíntese , Bainha de Mielina/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Triacetina/uso terapêutico , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
17.
Brain Res ; 1227: 34-41, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18621030

RESUMO

Several reports during the last three decades have indicated that biosynthesis of N-acetylaspartate (NAA) occurs primarily in the mitochondria. But a recent report by Lu et al. in this journal [2004; 122: 71-78] and subsequent two reports that cited those data suggested a predominant microsomal localization of the NAA biosynthetic enzyme, which is surprising in view of what is known about the biological functions of NAA. Therefore we reinvestigated this issue in rat brain homogenates using a similar fractionation procedure used by Lu et al. but without the loss of enzyme activity that they have encountered. We found that about 70% of the total Asp-NAT activity in the crude supernatant was present in the mitochondrial fraction which is about 5 times more than that in the microsomes. We found similar results in the case of the enzyme from bovine brain. In subsequent studies, we also have found that Asp-NAT activity in the bovine brain is very similar to that in the rat brain in substrate specificity and chromatographic characteristics including the high molecular weight pattern (approx. 670 kD) on size-exclusion HPLC.


Assuntos
Aminoácido N-Acetiltransferase/metabolismo , Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Microssomos/metabolismo , Mitocôndrias/metabolismo , Animais , Ácido Aspártico/biossíntese , Encéfalo/enzimologia , Química Encefálica , Radioisótopos de Carbono/metabolismo , Bovinos , Fracionamento Celular/métodos , Cromatografia Líquida de Alta Pressão/métodos , Ensaio Imunorradiométrico/métodos , Masculino , Microssomos/enzimologia , Mitocôndrias/enzimologia , Ratos , Ratos Sprague-Dawley , Frações Subcelulares/enzimologia , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...