Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Brain Commun ; 5(6): fcad258, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953850

RESUMO

Human evolution has seen the development of higher-order cognitive and social capabilities in conjunction with the unique laminar cytoarchitecture of the human cortex. Moreover, early-life cortical maldevelopment has been associated with various neurodevelopmental diseases. Despite these connections, there is currently no noninvasive technique available for imaging the detailed cortical laminar structure. This study aims to address this scientific and clinical gap by introducing an approach for imaging human cortical lamina. This method combines diffusion-relaxation multidimensional MRI with a tailored unsupervised machine learning approach that introduces enhanced microstructural sensitivity. This new imaging method simultaneously encodes the microstructure, the local chemical composition and importantly their correlation within complex and heterogenous tissue. To validate our approach, we compared the intra-cortical layers obtained using our ex vivo MRI-based method with those derived from Nissl staining of postmortem human brain specimens. The integration of unsupervised learning with diffusion-relaxation correlation MRI generated maps that demonstrate sensitivity to areal differences in cytoarchitectonic features observed in histology. Significantly, our observations revealed layer-specific diffusion-relaxation signatures, showing reductions in both relaxation times and diffusivities at the deeper cortical levels. These findings suggest a radial decrease in myelin content and changes in cell size and anisotropy, reflecting variations in both cytoarchitecture and myeloarchitecture. Additionally, we demonstrated that 1D relaxation and high-order diffusion MRI scalar indices, even when aggregated and used jointly in a multimodal fashion, cannot disentangle the cortical layers. Looking ahead, our technique holds the potential to open new avenues of research in human neurodevelopment and the vast array of disorders caused by disruptions in neurodevelopment.

2.
Res Sq ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37292694

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia in older adults. Neuropathological and imaging studies have demonstrated a progressive and stereotyped accumulation of protein aggregates, but the underlying molecular and cellular mechanisms driving AD progression and vulnerable cell populations affected by disease remain coarsely understood. The current study harnesses single cell and spatial genomics tools and knowledge from the BRAIN Initiative Cell Census Network to understand the impact of disease progression on middle temporal gyrus cell types. We used image-based quantitative neuropathology to place 84 donors spanning the spectrum of AD pathology along a continuous disease pseudoprogression score and multiomic technologies to profile single nuclei from each donor, mapping their transcriptomes, epigenomes, and spatial coordinates to a common cell type reference with unprecedented resolution. Temporal analysis of cell-type proportions indicated an early reduction of Somatostatin-expressing neuronal subtypes and a late decrease of supragranular intratelencephalic-projecting excitatory and Parvalbumin-expressing neurons, with increases in disease-associated microglial and astrocytic states. We found complex gene expression differences, ranging from global to cell type-specific effects. These effects showed different temporal patterns indicating diverse cellular perturbations as a function of disease progression. A subset of donors showed a particularly severe cellular and molecular phenotype, which correlated with steeper cognitive decline. We have created a freely available public resource to explore these data and to accelerate progress in AD research at SEA-AD.org.

3.
Mov Disord ; 33(12): 1887-1894, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30537011

RESUMO

BACKGROUND: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder associated with premutation alleles of the FMR1 gene. Expansions of more than 200 CGG repeats give rise to fragile X syndrome, the most common inherited form of cognitive impairment. Fragile X-associated tremor/ataxia syndrome is characterized by cerebellar tremor and ataxia, and the presence of ubiquitin-positive inclusions in neurons and astrocytes. It has been previously suggested that fragile X-associated tremor/ataxia syndrome is associated with an inflammatory state based on signs of oxidative stress-mediated damage and iron deposition. OBJECTIVE: Determine whether the pathology of fragile X-associated tremor/ataxia syndrome involves microglial activation and an inflammatory state. METHODS: Using ionized calcium binding adaptor molecule 1 and cluster differentiation 68 antibodies to label microglia, we examined the number and state of activation of microglial cells in the putamen of 13 fragile X-associated tremor/ataxia syndrome and 9 control postmortem cases. RESULTS: Nearly half of fragile X-associated tremor/ataxia syndrome cases (6 of 13) presented with dystrophic senescent microglial cells. In the remaining fragile X-associated tremor/ataxia syndrome cases (7 of 13), the number of microglial cells and their activation state were increased compared to controls. CONCLUSIONS: The presence of senescent microglial cells in half of fragile X-associated tremor/ataxia syndrome cases suggests that this indicator could be used, together with the presence of intranuclear inclusions and the presence of iron deposits, as a biomarker to aid in the postmortem diagnosis of fragile X-associated tremor/ataxia syndrome. An increased number and activation indicate that microglial cells play a role in the inflammatory state present in the fragile X-associated tremor/ataxia syndrome brain. Anti-inflammatory treatment of patients with fragile X-associated tremor/ataxia syndrome may be indicated to slow neurodegeneration. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Astrócitos/patologia , Ataxia/patologia , Encéfalo/patologia , Síndrome do Cromossomo X Frágil/patologia , Doenças Neurodegenerativas/terapia , Tremor/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Ataxia/terapia , Encéfalo/fisiopatologia , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/uso terapêutico , Síndrome do Cromossomo X Frágil/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Transtornos dos Movimentos/terapia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Tremor/fisiopatologia , Tremor/terapia
4.
Cereb Cortex ; 28(2): 411-420, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28122807

RESUMO

An interneuron alteration has been proposed as a source for the modified balance of excitation / inhibition in the cerebral cortex in autism. We previously demonstrated a decreased number of parvalbumin (PV)-expressing interneurons in prefrontal cortex in autism. PV-expressing interneurons include chandelier (Ch) and basket (Bsk) cells. We asked whether the decreased PV+ interneurons affected both Ch cells and Bsk cells in autism. The lack of single markers to specifically label Ch cells or Bsk cells presented an obstacle for addressing this question. We devised a method to discern between PV-Ch and PV-Bsk cells based on the differential expression of Vicia villosa lectin (VVA). VVA binds to N-acetylgalactosamine, that is present in the perineuronal net surrounding some cell types where it plays a role in intercellular communication. N-acetylgalactosamine is present in the perineuronal net surrounding Bsk but not Ch cells. We found that the number of Ch cells is consistently decreased in the prefrontal cortex of autistic (n = 10) when compared with control (n = 10) cases, while the number of Bsk cells is not as severely affected. This finding expand our understanding of GABAergic system functioning in the human cerebral cortex in autism, which will impact translational research directed towards providing better treatment paradigms for individuals with autism.


Assuntos
Transtorno Autístico/patologia , Neurônios/patologia , Córtex Pré-Frontal/patologia , Adolescente , Adulto , Transtorno Autístico/metabolismo , Contagem de Células/métodos , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Parvalbuminas/biossíntese , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Adulto Jovem
6.
Cereb Cortex ; 28(11): 3880-3893, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136119

RESUMO

The organization of the mammalian cerebral cortex shares fundamental features across species. However, while the radial thickness of grey matter varies within one order of magnitude, the tangential spread of the cortical sheet varies by orders of magnitude across species. A broader sample of model species may provide additional clues for understanding mechanisms that drive cortical expansion. Here, we introduce the bat Carollia perspicillata as a new model species. The brain of C. perspicillata is similar in size to that of mouse but has a cortical neurogenic period at least 5 times longer than mouse, and nearly as long as that of the rhesus macaque, whose brain is 100 times larger. We describe the development of laminar and regional structures, neural precursor cell identity and distribution, immune cell distribution, and a novel population of Tbr2+ cells in the caudal ganglionic eminence of the developing neocortex of C. perspicillata. Our data indicate that unique mechanisms guide bat cortical development, particularly concerning cell cycle length. The bat model provides new perspective on the evolution of developmental programs that regulate neurogenesis in mammalian cerebral cortex, and offers insight into mechanisms that contribute to tangential expansion and gyri formation in the cerebral cortex.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Quirópteros/fisiologia , Neurogênese , Animais , Feminino , Substância Cinzenta/crescimento & desenvolvimento , Microglia/fisiologia , Especificidade da Espécie
7.
PLoS One ; 12(8): e0183443, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28820892

RESUMO

An association between maternal IgG antibodies reactive against proteins in fetal brain and an outcome of autism in the child has been identified. Using a mouse model of prenatal intraventricular administration of autism-specific maternal IgG, we demonstrated that these antibodies produce behavioral alterations similar to those in children with ASD. We previously demonstrated that these antibodies bind to radial glial stem cells (RG) and observed an increase in the number of divisions of translocating RG in the developing cortex. We also showed an alteration in brain size and as well as a generalized increased of neuronal volume in adult mice. Here, we used our intraventricular mouse model of antibody administration, followed by Golgi and Neurolucida analysis to demonstrate that during midstages of neurogenesis these maternal autism-specific antibodies produced a consistent decrease in the number of spines in the infragranular layers in the adult cortical areas analyzed. Specifically, in the frontal cortex basal dendrites of layer V neurons were decreased in length and volume, and both the total number of spines-mature and immature-and the spine density were lower than in the control neurons from the same region. Further, in the occipital cortex layer VI neurons presented with a decrease in the total number of spines and in the spine density in the apical dendrite, as well as decrease in the number of mature spines in the apical and basal dendrites. Interestingly, the time of exposure to these antibodies (E14.5) coincides with the generation of pyramidal neurons in layer V in the frontal cortex and in layer VI in the occipital cortex, following the normal rostro-caudal pattern of cortical cell generation. We recently demonstrated that one of the primary antigens recognized by these antibodies corresponds to stress-induced phosphoprotein 1 (STIP1). Here we hypothesize that the reduction in the access of newborn cells to STIP1 in the developing cortex may be responsible for the reduced dendritic arborization and number of spines we noted in the adult cortex.


Assuntos
Autoanticorpos/imunologia , Córtex Cerebral/imunologia , Espinhas Dendríticas/imunologia , Animais , Córtex Cerebral/citologia , Feminino , Camundongos , Gravidez
8.
Stem Cells Dev ; 26(19): 1409-1423, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28693365

RESUMO

Human pluripotent stem cells (hPSC) have great clinical potential through the use of their differentiated progeny, a population in which there is some concern over risks of tumorigenicity or other unwanted cellular behavior due to residual hPSC. Preclinical studies using human stem cells are most often performed within a xenotransplant context. In this study, we sought to measure how undifferentiated hPSC behave following xenotransplant. We directly transplanted undifferentiated human induced pluripotent stem cells (hIPSC) and human embryonic stem cells (hESC) into the adult mouse brain ventricle and analyzed their fates. No tumors or precancerous lesions were present at more than one year after transplantation. This result differed with the tumorigenic capacity we observed after allotransplantation of mouse ESC into the mouse brain. A substantial population of cellular derivatives of undifferentiated hESC and hIPSC engrafted, survived, and migrated within the mouse brain parenchyma. Within brain structures, transplanted cell distribution followed a very specific pattern, suggesting the existence of distinct microenvironments that offer different degrees of permissibility for engraftment. Most of the transplanted hESC and hIPSC that developed into brain cells were NeuN+ neuronal cells, and no astrocytes were detected. Substantial cell and nuclear fusion occurred between host and transplanted cells, a phenomenon influenced by microenvironment. Overall, hIPSC appear to be largely functionally equivalent to hESC in vivo. Altogether, these data bring new insights into the behavior of stem cells without prior differentiation following xenotransplantation into the adult brain.


Assuntos
Células-Tronco Embrionárias/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Nicho de Células-Tronco , Transplante de Células-Tronco/efeitos adversos , Transplante Heterólogo/efeitos adversos , Animais , Astrócitos/citologia , Encéfalo/citologia , Linhagem Celular , Células Cultivadas , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Transplante de Células-Tronco/métodos , Transplante Heterólogo/métodos
9.
Clin Case Rep ; 5(5): 625-629, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28469864

RESUMO

This is a report of FMR1 premutation with Prader-Willi phenotype (PWP) and FXTAS. Although the PWP is common in fragile X syndrome (FXS), it has never been described in someone with the premutation. The patient presented intranuclear inclusions, severe obesity, hyperphagia, and ADHD symptoms, typical of the PWP in FXS. In addition, the autopsy revealed multiple architectural cortical abnormalities.

10.
Mov Disord ; 32(4): 585-591, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28233916

RESUMO

BACKGROUND: Fragile X-associated tremor/ataxia syndrome is an adult-onset disorder associated with premutation alleles of the FMR1 gene. This disorder is characterized by progressive action tremor, gait ataxia, and cognitive decline. Fragile X-associated tremor/ataxia syndrome pathology includes dystrophic white matter and intranuclear inclusions in neurons and astrocytes. We previously demonstrated that the transport of iron into the brain is altered in fragile X-associated tremor/ataxia syndrome; therefore, we also expect an alteration of iron metabolism in brain areas related to motor control. Iron is essential for cell metabolism, but uncomplexed iron leads to oxidative stress and contributes to the development of neurodegenerative diseases. We investigated a potential iron modification in the putamen - a structure that participates in motor learning and performance - in fragile X-associated tremor/ataxia syndrome. METHODS: We used samples of putamen obtained from 9 fragile X-associated tremor/ataxia syndrome and 9 control cases to study iron localization using Perl's method, and iron-binding proteins using immunostaining. RESULTS: We found increased iron deposition in neuronal and glial cells in the putamen in fragile X-associated tremor/ataxia syndrome. We also found a generalized decrease in the amount of the iron-binding proteins transferrin and ceruloplasmin, and decreased number of neurons and glial cells that contained ceruloplasmin. However, we found increased levels of iron, transferrin, and ceruloplasmin in microglial cells, indicating an attempt by the immune system to remove the excess iron. CONCLUSIONS: Overall, found a deficit in proteins that eliminate extra iron from the cells with a concomitant increase in the deposit of cellular iron in the putamen in Fragile X-associated tremor/ataxia syndrome. © 2017 International Parkinson and Movement Disorder Society.


Assuntos
Ataxia/patologia , Síndrome do Cromossomo X Frágil/patologia , Ferro/metabolismo , Putamen/metabolismo , Tremor/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Ataxia/genética , Estudos de Casos e Controles , Cerebelo/patologia , Ceruloplasmina/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Humanos , Masculino , Transferrina/metabolismo , Tremor/genética
11.
Cereb Cortex ; 27(3): 1931-1943, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-26922658

RESUMO

The cognitive phenotype of autism has been correlated with an altered balance of excitation to inhibition in the cerebral cortex, which could result from a change in the number, function, or morphology of GABA-expressing interneurons. The number of GABAergic interneuron subtypes has not been quantified in the autistic cerebral cortex. We classified interneurons into 3 subpopulations based on expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin. We quantified the number of each interneuron subtype in postmortem neocortical tissue from 11 autistic cases and 10 control cases. Prefrontal Brodmann Areas (BA) BA46, BA47, and BA9 in autism and age-matched controls were analyzed by blinded researchers. We show that the number of parvalbumin+ interneurons in these 3 cortical areas-BA46, BA47, and BA9-is significantly reduced in autism compared with controls. The number of calbindin+ and calretinin+ interneurons did not differ in the cortical areas examined. Parvalbumin+ interneurons are fast-spiking cells that synchronize the activity of pyramidal cells through perisomatic and axo-axonic inhibition. The reduced number of parvalbumin+ interneurons could disrupt the balance of excitation/inhibition and alter gamma wave oscillations in the cerebral cortex of autistic subjects. These data will allow development of novel treatments specifically targeting parvalbumin interneurons.


Assuntos
Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Interneurônios/metabolismo , Interneurônios/patologia , Parvalbuminas/metabolismo , Adolescente , Adulto , Calbindina 2/metabolismo , Calbindinas/metabolismo , Contagem de Células , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
J Med Case Rep ; 10(1): 237, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27562638

RESUMO

BACKGROUND: Autism is not correlated with any neuropathological hallmark as the brain of autistic individuals lack defined lesions. However, previous investigations have reported cortical heterotopias and local distortion of the cytoarchitecture of the neocortex in some cases of autism. CASE PRESENTATION: Our patient was a 40-year-old white woman diagnosed at an early age with autism and mental retardation. Pencil fibers were present within the prefrontal cortex (Brodmann area 47) and its composition resembled that of the underlying white matter region. Pencil fibers encompassed most of the extent of the cortical grey matter and were populated by oligodendrocytes, astrocytes, and microglial cells, but not by neurons. CONCLUSIONS: Here we report a new cytoarchitectural abnormality that has not been previously described in autism. Future pathological examinations should keep in mind the potential presence of pencil fibers within the prefrontal cortex of cases with autism.


Assuntos
Transtorno Autístico/diagnóstico por imagem , Transtorno Autístico/patologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética
13.
Cerebellum ; 15(5): 641-4, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27259564

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder associated with premutation alleles of the FMR1 gene. Iron is essential for many facets of cell metabolism in the brain but when altered is likely to contribute to the development of neurodegenerative diseases. We previously reported that iron accumulates in the choroid plexus and the putamen in FXTAS and that the level and distribution of key iron-binding proteins are also altered, suggesting a potential alteration of iron metabolism in the brain. Here, we hypothesize that iron metabolism is also altered in the FXTAS cerebellum. To test this hypothesis, we used cerebellum samples collected from FXTAS and control subjects and measured the amount of iron contained within the cerebellar cortex and dentate nucleus. We found that the number of iron deposits increased in the cerebellum only in a subset of cases of FXTAS. This accumulation is likely to be mediated by factors other than or in addition to CGG-repeat coupled pathology. Thus, iron deposition in the cerebellum cannot be used as a hallmark of FXTAS pathogenesis.


Assuntos
Ataxia/genética , Ataxia/metabolismo , Cerebelo/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Ferro/metabolismo , Tremor/genética , Tremor/metabolismo , Idoso , Idoso de 80 Anos ou mais , Ataxia/patologia , Cerebelo/patologia , Feminino , Síndrome do Cromossomo X Frágil/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Tremor/patologia , Expansão das Repetições de Trinucleotídeos
14.
Cerebellum ; 15(5): 546-51, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27108270

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a progressive neurodegenerative disorder that affects carriers of a FMR1 premutation. Symptoms include cerebellar ataxia, tremor, and cognitive deficits. The most characteristic pathology of FXTAS is the presence of eosinophilic ubiquitin-positive intranuclear inclusions in neurons and astrocytes throughout the nervous system and non-nervous tissues. Inclusions are present in neurons throughout the brain but are widely believed not to be present in the Purkinje cells (PCs) of the cerebellum. However, we analyzed 26 postmortem cases of FXTAS and demonstrated that 65 % of cases presented with inclusions within PCs of the cerebellum. We determined that the presence or absence of inclusions in PCs is correlated with age and that those cases with PC inclusions were overall 11 years older than those with no PC inclusions. Half of the cases with PCs with inclusions presented with twin nuclear inclusions. This novel finding demonstrating the presence of inclusions within PCs provides an insight into the understanding of the FXTAS motor symptoms and provides a novel target for the development of therapeutic strategies.


Assuntos
Ataxia/patologia , Síndrome do Cromossomo X Frágil/patologia , Corpos de Inclusão Intranuclear/patologia , Células de Purkinje/patologia , Tremor/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Cereb Cortex ; 26(1): 374-383, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25535268

RESUMO

Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor.


Assuntos
Autoanticorpos/farmacologia , Neocórtex/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Transtorno Autístico/imunologia , Transtorno Autístico/metabolismo , Ventrículos Cerebrais/metabolismo , Feminino , Camundongos , Neocórtex/citologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Neurônios/citologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia
16.
J Comp Neurol ; 524(3): 433-47, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26267763

RESUMO

The subventricular zone (SVZ) is greatly expanded in primates with gyrencephalic cortices and is thought to be absent from vertebrates with three-layered, lissencephalic cortices, such as the turtle. Recent work in rodents has shown that Tbr2-expressing neural precursor cells in the SVZ produce excitatory neurons for each cortical layer in the neocortex. Many excitatory neurons are generated through a two-step process in which Pax6-expressing radial glial cells divide in the VZ to produce Tbr2-expressing intermediate progenitor cells, which divide in the SVZ to produce cortical neurons. We investigated the evolutionary origin of SVZ neural precursor cells in the prenatal cerebral cortex by testing for the presence and distribution of Tbr2-expressing cells in the prenatal cortex of reptilian and avian species. We found that mitotic Tbr2(+) cells are present in the prenatal cortex of lizard, turtle, chicken, and dove. Furthermore, Tbr2(+) cells are organized into a distinct SVZ in the dorsal ventricular ridge (DVR) of turtle forebrain and in the cortices of chicken and dove. Our results are consistent with the concept that Tbr2(+) neural precursor cells were present in the common ancestor of mammals and reptiles. Our data also suggest that the organizing principle guiding the assembly of Tbr2(+) cells into an anatomically distinct SVZ, both developmentally and evolutionarily, may be shared across vertebrates. Finally, our results indicate that Tbr2 expression can be used to test for the presence of a distinct SVZ and to define the boundaries of the SVZ in developing cortices.


Assuntos
Evolução Biológica , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Células-Tronco Neurais/metabolismo , Nicho de Células-Tronco/fisiologia , Proteínas com Domínio T/metabolismo , Animais , Proteínas Aviárias/metabolismo , Córtex Cerebral/citologia , Embrião de Galinha/metabolismo , Columbidae/embriologia , Columbidae/metabolismo , Imuno-Histoquímica , Ventrículos Laterais , Lagartos/embriologia , Lagartos/metabolismo , Células-Tronco Neurais/citologia , Proteínas de Répteis/metabolismo , Especificidade da Espécie , Tartarugas/embriologia , Tartarugas/metabolismo
17.
J Vis Exp ; (98)2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25938880

RESUMO

Compression injuries of the murine spinal cord are valuable animal models for the study of spinal cord injury (SCI) and spinal regenerative therapy. The calibrated forceps model of compression injury is a convenient, low cost, and very reproducible animal model for SCI. We used a pair of modified forceps in accordance with the method published by Plemel et al. (2008) to laterally compress the spinal cord to a distance of 0.35 mm. In this video, we will demonstrate a dorsal laminectomy to expose the spinal cord, followed by compression of the spinal cord with the modified forceps. In the video, we will also address issues related to the care of paraplegic laboratory animals. This injury model produces mice that exhibit impairment in sensation, as well as impaired hindlimb locomotor function. Furthermore, this method of injury produces consistent aberrations in the pathology of the SCI, as determined by immunohistochemical methods. After watching this video, viewers should be able to determine the necessary supplies and methods for producing SCI of various severities in the mouse for studies on SCI and/or treatments designed to mitigate impairment after injury.


Assuntos
Modelos Animais de Doenças , Compressão da Medula Espinal/etiologia , Medula Espinal/cirurgia , Animais , Calibragem , Laminectomia , Camundongos , Reprodutibilidade dos Testes , Instrumentos Cirúrgicos
18.
Neurosci Lett ; 589: 98-103, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25582788

RESUMO

We investigated the cytoarchitecture of the anterior superior temporal area (TA2) of the postmortem cerebral cortex in 9 subjects with autism and 9 age-matched typically developing subjects between the ages of 13 and 56 years. The superior temporal gyrus is involved in auditory processing and social cognition and its pathology has been correlated with autism. We quantified the number and soma volume of pyramidal neurons in the supragranular layers and pyramidal neurons in the infragranular layers in each subject. We did not find significant differences in the number or volume of supragranular or infragranular neurons in the cerebral cortex of subjects with autism compared to typically developing subjects. This report does not support an alteration of supragranular to infragranular neurons in autism. However, further stereological analysis of the number of cells and cell volumes in specific cortical areas is needed to better establish the cellular phenotype of the autistic cerebral cortex and to understand its clinical relevance in autism.


Assuntos
Transtorno Autístico/patologia , Células Piramidais/patologia , Lobo Temporal/patologia , Adolescente , Adulto , Estudos de Casos e Controles , Contagem de Células , Tamanho Celular , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Brain Res ; 1598: 88-96, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25498860

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder associated with premutation alleles of the FMR1 gene that is characterized by progressive action tremor, gait ataxia, and cognitive decline. Recent studies of mitochondrial dysfunction in FXTAS have suggested that iron dysregulation may be one component of disease pathogenesis. We tested the hypothesis that iron dysregulation is part of the pathogenic process in FXTAS. We analyzed postmortem choroid plexus from FXTAS and control subjects, and found that in FXTAS iron accumulated in the stroma, transferrin levels were decreased in the epithelial cells, and transferrin receptor 1 distribution was shifted from the basolateral membrane (control) to a predominantly intracellular location (FXTAS). In addition, ferroportin and ceruloplasmin were markedly decreased within the epithelial cells. These alterations have implications not only for understanding the pathophysiology of FXTAS, but also for the development of new clinical treatments that may incorporate selective iron chelation.


Assuntos
Ataxia/metabolismo , Plexo Corióideo/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Ferro/metabolismo , Tremor/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Ataxia/patologia , Proteínas de Transporte de Cátions/deficiência , Ceruloplasmina/deficiência , Plexo Corióideo/patologia , Epitélio/metabolismo , Epitélio/patologia , Feminino , Síndrome do Cromossomo X Frágil/patologia , Humanos , Espaço Intracelular/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores da Transferrina/metabolismo , Transferrina/deficiência , Tremor/patologia
20.
Neurosci Lett ; 579: 163-7, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25067827

RESUMO

Reelin protein (RELN) level is reduced in the cerebral cortex and cerebellum of subjects with autism. RELN is synthesized and secreted by a subpopulation of neurons in the developing cerebral cortex termed Cajal-Retzius (CR) cells. These cells are abundant in the marginal zone during cortical development, many die after development is complete, but a small population persists into adulthood. In adult brains, RELN is secreted by the surviving CR cells, by a subset of GABAergic interneurons in layer I, and by pyramidal cells and GABAergic interneurons in deeper cortical layers. It is widely believed that decreased RELN in layer I of the cerebral cortex of subjects with autism may result from a decrease in the density of RELN expressing neurons in layer I; however, this hypothesis has not been tested. We examined RELN expression in layer I of the adult human cortex and found that 70% of cells express RELN in both control and autistic subjects. We quantified the density of neurons in layer I of the superior temporal cortex of subjects with autism and age-matched control subjects. Our data show that there is no change in the density of neurons in layer I of the cortex of subjects with autism, and therefore suggest that reduced RELN expression in the cerebral cortex of subjects with autism is not a consequence of decreased numbers of RELN-expressing neurons in layer I. Instead reduced RELN may result from abnormal RELN processing, or a decrease in the number of other RELN-expressing neuronal cell types.


Assuntos
Transtorno Autístico/patologia , Moléculas de Adesão Celular Neuronais/biossíntese , Proteínas da Matriz Extracelular/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Neurônios/patologia , Serina Endopeptidases/biossíntese , Lobo Temporal/patologia , Adolescente , Adulto , Transtorno Autístico/metabolismo , Contagem de Células , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Humanos , Pessoa de Meia-Idade , Neurônios/metabolismo , Células Piramidais/metabolismo , Proteína Reelina , Lobo Temporal/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...