Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Microbiol Methods ; 222: 106954, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754480

RESUMO

Bacterial meningitis is an acute infection which requires rapid diagnosis and treatment due to the high mortality and serious consequences of the disease. The purpose of this study was to design a homemade multiplex PCR and a novel fluorescence biosensor on chip (FBC) to detect three important agents of meningitis including Streptococcus pneumoniae (S. pneumoniae), Neisseria meningitidis (N. meningitidis), and Haemophilus influenzae (H. influenzae). The homemade multiplex PCR can diagnose three bacterial species simultaneously. Fabrication of FBC was carried out based on the deposition of lead nanoparticles on a quartz slide using the thermal evaporation method. Then, the SH-Cap Probe/Target ssDNA /FAM-Rep probe was loaded on lead film. The evaluation of the fluorescence reaction when the probes bind to the target ssDNA was assessed by a Cytation 5 Cell Imaging Multimode Reader Bio-Tek. The limit of detections (LOD) in homemade PCR and FBC to identify S. pneumoniae were 119 × 102 CFU/mL (0.27 ng/µL) and 380 CFU/mL (9 pg/µL), respectively. The LODs of homemade PCR and FBC for detection of N. meningitidis were 4.49 CFU/mL (1.1 pg/µL) and 13 × 103 CFU/mL (30 pg/µL), respectively. Our results confirmed the LODs of homemade PCR and FBC in detection of H. influenzae were 15.1 CFU/mL (30 fg/µL) and 41 × 102 CFU/mL (90 pg/ µL), respectively. Both techniques had appropriate sensitivity and specificity in detection of S. pneumoniae, N. meningitidis and H. influenzae.

2.
ACS Med Chem Lett ; 15(4): 449-456, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38628801

RESUMO

Chemotherapy has been ineffective in cancer treatment, and efficient delivery of chemotherapeutic agents remains a challenge. In this study, we developed a doxorubicin-loaded shilajit-based nanocarrier (SHN-Dox) using a nanoprecipitation method to enhance Dox uptake into breast cancer cells (MCF-7 and ZR-75-1). After confirmation of the physicochemical properties of the nanocarriers, the cytotoxic and pro-apoptotic effects of SHN-Dox and the production of reactive oxygen species (ROS) were evaluated on breast cancer cells. SHN-Dox showed a spherical shape with a size of 244 nm and a sustainable release profile of Dox. It exhibited high cytotoxicity against MCF-7 and ZR-75-1 cells, effectively inducing DNA fragmentation in these cells. After 24 h of treatment, SHN-Dox increased the apoptosis rate in MCF-7 cells and raised ROS levels. Therefore, SHN-Dox is a promising carrier that might reduce the side effects of Dox on healthy cells and provide a new strategy for clinical cancer treatment.

3.
Sci Rep ; 13(1): 11090, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422485

RESUMO

Protein-based nanocarriers have demonstrated good potential for cancer drug delivery. Silk sericin nano-particle is arguably one of the best in this field. In this study, we developed a surface charge reversal sericin-based nanocarrier to co-deliver resveratrol and melatonin (MR-SNC) to MCF-7 breast cancer cells as combination therapy. MR-SNC was fabricated with various sericin concentrations via flash-nanoprecipitation as a simple and reproducible method without complicated equipment. The nanoparticles were subsequently characterized for their size, charge, morphology and shape by dynamic light scattering (DLS) and scanning electron microscope (SEM). Nanocarriers chemical and conformational analysis were done by fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) respectively. In vitro drug release was determined at different pH values (7.45, 6.5 and 6). The cellular uptake and cytotoxicity were studies using breast cancer MCF-7 cells. MR-SNC fabricated with the lowest sericin concentration (0.1%), showed a desirable 127 nm size, with a net negative charge at physiological pH. Sericin structure was preserved entirely in the form of nano-particles. Among the three pH values we applied, the maximum in vitro drug release was at pH 6, 6.5, and 7.4, respectively. This pH dependency showed the charge reversal property of our smart nanocarrier via changing the surface charge from negative to positive in mildly acidic pH, destructing the electrostatic interactions between sericin surface amino acids. Cell viability studies demonstrated the significant toxicity of MR-SNC in MCF-7 cells at all pH values after 48 h, suggesting a synergistic effect of combination therapy with the two antioxidants. The efficient cellular uptake of MR-SNC, DNA fragmentation and chromatin condensation was found at pH 6. Nutshell, our result indicated proficient release of the entrapped drug combination from MR-SNC in an acidic environment leading to cell apoptosis. This work introduces a smart pH-responsive nano-platform for anti-breast cancer drug delivery.


Assuntos
Antineoplásicos , Melatonina , Nanopartículas , Neoplasias , Sericinas , Humanos , Células MCF-7 , Sericinas/farmacologia , Sericinas/química , Resveratrol/farmacologia , Melatonina/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Proliferação de Células , Nanopartículas/química , Portadores de Fármacos/química
4.
Cell Mol Biol (Noisy-le-grand) ; 69(4): 1-6, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37329555

RESUMO

Nowadays, medicinal plants are used to overcome the side effects of prescription drugs in modern medicine. Glycyrrhizic acid (GA) derived from the root of the licorice plant is one of the plant compounds whose effectiveness has been confirmed in the treatment of inflammatory bowel disorders (IBD). Liposome thin film hydration method was used to synthesize chitosan-coated liposomes containing GA. In the present study, chitosan-coated liposome was characterized by dynamic light scattering (DLS), zeta potential, scanning electron microscope (SEM) and Fourier transforms infrared spectroscopy (FTIR). The FTIR spectrum confirmed the coating of liposomes by chitosan polymer.  Liposome coating leads to an increase in the size and values of zeta potential. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay of chitosan-coated liposomes containing GA confirmed that it has no cytotoxicity toward fibroblasts cell line, therefore confirming their cytocompatibility. Overall, drug loading, release and cytotoxicity were evaluated and it was found that chitosan decreased the release rate of GA. It seems; chitosan-coated liposomes may be a suitable system for delivering liposomal GA in the treatment of IBD.


Assuntos
Quitosana , Doenças Inflamatórias Intestinais , Humanos , Lipossomos/química , Ácido Glicirrízico/farmacologia , Quitosana/química , Adesivos , Anti-Inflamatórios/farmacologia , Tamanho da Partícula
5.
Int J Biol Macromol ; 226: 1426-1443, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36442567

RESUMO

A polyamide/Pistacia atlantica (P.a) gum nanofiber, fabricated by electrospinning method, was coated on a layer of PEBAX/PVA hydrogel embedded with green synthesized Ag nanoparticles (AgNPs) and the prepared nanofiber-hydrogel composite was assessed for wound dressing application. The AgNPs were characterized using ultraviolet-visible (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Zeta potential analysis. The PEBAX/PVA/Ag hydrogel, prepared using solution casting method, displayed strong mechanical properties as Young's modulus and the elongation at break for the hydrogel containing AgNPs increased by 12 % and 96 %, respectively. The PEBAX/PVA/Ag hydrogel showed a high antimicrobial activity towards the E. coli (22.8 mm) with no cytotoxicity. The effect of adding the P.a gum on the properties of polyamide nanofiber was investigated using FTIR, SEM, and tensile tests. Samples were assessed by swelling, degradation, and water vapor transfer measurements. Very fine and continuous fibers with average diameters of ≤200 nm were observed by SEM analysis due to the addition of the P.a gum. The result of tensile test indicated that the addition of P.a gum improves the mechanical properties of nanofibers. The physical properties and biocompatibility of the two layers were shown to be complementary when combined.


Assuntos
Antígenos de Grupos Sanguíneos , Nanopartículas Metálicas , Nanofibras , Pistacia , Nanofibras/química , Nanopartículas Metálicas/química , Hidrogéis/farmacologia , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Nylons , Prata/química , Álcool de Polivinil/química , Bandagens , Antibacterianos/farmacologia , Antibacterianos/química
6.
Cell Tissue Bank ; 24(2): 329-340, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36284047

RESUMO

Tissue engineering is one of the most important medical rehabilitation tools that includes two vital components of scaffolding and cell growth stimulants. Therefore, designing a more intelligent, portable, monitorable, and safe scaffold that can release growth factors is a key step in achieving an acceptable level of cells for treating patients. In this study, a nanofibers-grafted scaffold was prepared with two-nozzle electrospinning to serve as a tissue engineering scaffold. Fundamental physical characterizations were carried out by scanning electron microscopy (SEM), pore diameter determination, and FT-IR. Fundamental physical characterization revealed that the nanofibers-scaffolds grafted with Royal Jelly significantly increased hydrophilicity, but the porosity of the novel-nanofibers did not alter significantly than the nanofibers without Royal Jelly. Based on the MTT assay results, cell growth, survival, and proliferation of the HUVEC Cell line were increased in the nanofibers scaffold grafted with Royal Jelly. Together, these findings highlight the potential of our novel scaffold for tissue engineering applications.


Assuntos
Nanofibras , Humanos , Células Endoteliais da Veia Umbilical Humana , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos , Alicerces Teciduais , Proliferação de Células , Interações Hidrofóbicas e Hidrofílicas , Poliésteres
7.
Cell Tissue Bank ; 24(3): 535-549, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36454377

RESUMO

One of the important issues in tissue engineering has been the development of 3D scaffolds, which guide cells to grow functional tissues and allow the diffusion of nutrients, metabolites, and soluble factors. Factors governing scaffold design include considerations of pore size and morphology, mechanical properties versus porosity, surface properties, and appropriate biodegradability. Three-dimensional structures with low density, high surface area and porosity can be utilized effectively in the tissue engineering. Recently two-nozzle electrospinning was used for fabricate polymeric and ceramic bulky layers with specific formulation. Fabrication of 3D carbon nanofiber with this method was investigated in this assay with FESEM, TGA-DTA, FTIR and XRD. Polyacrylonitrile was used as precursor. The collector speed was changed (15, 30, 60, 150, 300 and 450 rpm) to result in oriented 3D carbon nanofiber after stepwise thermal process under neutral gas atmosphere. The effect of the mechanical force applied by the collector rotation not only can arranged carbon fiber mat but also can change the crystallinity of the carbon structure. The viability and growth capability of cells on nanofibers towards the lowest cytotoxicity of them proved by MTT test. The growth characteristic of neural and mouse bone marrow mesenchymal stem cells cultured in the webs showed the good adhesion with the blown web relative to a normal electrospun mat. The electrospun nanofibers mat had good tensile properties and high porosity and provides a favorable environment for neural cell attachment and proliferation comparable to other scaffolds. The cell viability and cell growth capability in prepared nanofibers were assessed.


Assuntos
Nanofibras , Animais , Camundongos , Nanofibras/química , Alicerces Teciduais/química , Carbono , Poliésteres/química , Engenharia Tecidual/métodos , Proliferação de Células
8.
Drug Deliv Transl Res ; 13(2): 568-579, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36058987

RESUMO

Cutaneous malignant melanoma is fastest-growing cancer in white populations with a large majority of dermal cancer death. The activity of vascular endothelial growth factors (VEGFs) results in the signaling of a variety of downstream intracellular pathways that ultimately leads to cell activation, proliferation, migration, and angiogenesis. VEGF inhibitors such as bevacizumab are widely used in chemotherapy with systemic administration, which in many cases is associated with a variety of side effects. Here, we designed and synthesized a lipid-polymer nanoparticle for local administration of bevacizumab. Drug release, dermal absorption, and the effects of synthesized nanoparticles containing bevacizumab on cell proliferation and in vitro and in vivo angiogenesis were investigated. Encapsulating bevacizumab in the synthesized nanoparticles resulted in a significant increase in its dermal absorption compared to free bevacizumab. Also, the suppressor effects of bevacizumab encapsulated in the synthesized nanoparticle on cell proliferation and angiogenesis were significantly more than those of free bevacizumab. Our findings indicate the remarkable effects of lipid-polymer nanoparticles in dermal absorption and in maintaining bevacizumab bioactivity, suggesting therapeutic benefits of local bevacizumab administration for angiogenesis-related disorders such as cutaneous melanoma. Chitosan nanoparticles containing bevacizumab antibody were synthesized by ion exchange method, and finally, these nanoparticles were coated with lipid (Lip-Chi-Bev NPs). In this study, the effect of synthesized nanoparticles on dermal absorption of bevacizumab was evaluated and its potential in inhibiting angiogenesis was evaluated by in vitro and in vivo models.


Assuntos
Quitosana , Melanoma , Nanopartículas , Neoplasias Cutâneas , Humanos , Bevacizumab , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Lipídeos , Inibidores da Angiogênese/farmacologia , Melanoma Maligno Cutâneo
9.
J Food Biochem ; 46(12): e14408, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36129161

RESUMO

Autophagy is a pivotal contributing factor to modulate the progression of neurodegenerative diseases. Although naringenin (Nar) has shown beneficial effects against neurodegenerative diseases, its poor solubility and bioavailability have limited its application. The present research aimed to design a nanostructured formulation of Nar to achieve an enhanced therapeutic effect. Herein, Nar-loaded solid lipid nanoparticles (Nar-SLNs) were prepared and characterized. Then, PC12 cells were exposed to streptozocin (STZ) and/or Nar and Nar-SLNs in vitro to clarify the protective effect of Nar and its nanoformulation against STZ-stimulated neurotoxicity. The empty SLNs and Nar-SLNs indicated a narrow polydispersity index value with a negative zeta potential. As determined by the scanning electron microscopy images, the nanoparticles had a spherical shape and were less than 20 nm in size. FTIR results demonstrated the interaction between Nar and SLNs and supported the presence of Nar in the nanoparticle. The nanoformulation revealed an initial burst release followed by a sustained release manner. Treatment of PC12 cells with STZ resulted in mitochondrial dysfunction and increased autophagic markers, including LC3-II, Beclin1, Akt, ATG genes, and accumulation of miR-21 and miR-22. Both Nar and Nar-SLNs pre-treatment improved cell survival and augmented mitochondrial membrane potential, accompanied by reduced autophagic markers expression. However, Nar-SLNs were more effective than free Nar. As a result, our findings suggested that SLNs effectively enhance the neuroprotective effect of Nar, and Nar-SLNs may be a promising candidate to suppress or prevent STZ-elicited neurotoxicity. PRACTICAL APPLICATIONS: According to the beneficial effect of Nar in the management of neurodegenerative diseases, we evaluated the protective effect of Nar and Nar-SLNs against STZ-stimulated neurotoxicity and analyzed the role of autophagy in STZ-stimulated neurotoxicity. Our results proposed that Nar-SLNs could be a promising option for neurological disorders prevention through autophagy suppression.


Assuntos
MicroRNAs , Nanopartículas , Fármacos Neuroprotetores , Ratos , Animais , Lipídeos , Fármacos Neuroprotetores/farmacologia , Estreptozocina
10.
Cell Mol Biol (Noisy-le-grand) ; 68(3): 34-42, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35988172

RESUMO

In addition to the detrimental environmental effects of herbicides, including the pollution of soil, atmosphere, groundwater aquifers and run-off water, the lack of caution and direct or indirect exposure to these products can cause short-term and long-term human health effects. However, nanotechnology, with its many applications, can be very helpful in improving agriculture and reducing the side effects of chemicals used in agriculture. Nano-encapsulation of chemicals used in agriculture is one of the strategies to improve precision agriculture. Nano-encapsulated herbicides are controlled membrane systems in which the active ingredient is coated with semi-permeable membranes, which may be organic or inorganic polymers. In our study, chloridazon herbicide was selected as the active ingredient for Nano-encapsulation. Like many other agricultural herbicides, the major problem with this herbicide is environmental pollution and its adverse health effects. The ionic gelation method was used to synthesize nanocapsules consisting of alginate and chitosan for chloridazon encapsulation. Alginate-chitosan nanoparticles were prepared in a two-step process involving the ionotropic pre-gelation of an alginate core and then the formation of a chitosan polyelectrolyte complex. The alginate-chitosan nanocapsules containing chloridazon were synthesized at a size of 253 nm with a polydispersity index (PDI) of 0.266 and a zeta potential of -1.43 mV. The loading capacity and entrapment efficiency of these nanocapsules were 14% and 57%, respectively. The study of chloridazon release from formulated alginate-chitosan nanocapsules was performed using dialysis tube testing and UV spectroscopy. The results of our study showed controlled release of chloridazon from loaded alginate-chitosan nanocapsules. In general, alginate-chitosan nanocapsules as a Nano-carrier, have the potential to become a commercial formulation for chloridazon encapsulation. On the other hand, controlled release and increasing the duration of action of chloridazon, along with reducing the required dose, is promising in reducing the adverse health and environmental effects caused by chloridazon and improving precision agriculture.


Assuntos
Quitosana , Herbicidas , Nanocápsulas , Nanopartículas , Alginatos/química , Quitosana/química , Preparações de Ação Retardada , Herbicidas/química , Humanos , Nanocápsulas/química , Nanopartículas/química , Tamanho da Partícula , Piridazinas
11.
Sci Rep ; 12(1): 3299, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228597

RESUMO

Evaluation of extracellular domain of human epidermal growth factor receptor-2 (HER2-ECD) oncomarker status is an impressive factor in screening, diagnosing and monitoring early-stage breast cancer (BC). Electrochemical aptamer-based nanobiosensor with high sensitivity and selectivity for quantitative and qualitative measurement of HER2-ECD oncomarker was developed. In this study, the nanocomposite made by distinct materials included reduced graphene oxide nano-sheets (rGONs) and rhodium nanoparticles (Rh-NPs) on the graphite electrode (GE) surface. This structure resulted in amplified electrochemical activity, high surface area, stability, and bio-compatibility. Each of the steps of preparing nanomaterials and setting up biosensor were carefully examined by analytical and electrochemical techniques. Various modified electrodes were constructed and analyzed in terms of electrochemical performance, morphology, size, and shape of nanomaterials. The GE-based aptasensor had a noteworthy and conducive results against HER2-ECD with a wide dynamic range of 10.0-500.0 ng/mL, a low limit of detection (LOD) of 0.667 ng/mL (significantly less than the clinical cut-off), and a low limit of quantification (LOQ) of 2.01 ng/mL. The benefits provided by this aptasensor such as broad dynamic range, high sensitivity, selectivity, stability, reproducibility, and low cost suggest tremendous potential for non-invasive detection and monitoring of the HER2-ECD levels of BC care and clinical diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Ródio , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Grafite/química , Humanos , Limite de Detecção , Biópsia Líquida , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes
12.
IEEE Trans Nanobioscience ; 21(4): 520-528, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34784282

RESUMO

In the present study, biocompatible nanofibers containing aqueous extracts from Muscari neglectum (M. neglectum) plants (produced nanofiber) were prepared and their antifungal and cytotoxicity effects were investigated. For this purpose, the extracts obtained from flowers, stem leaves, and fresh onion from M. neglectum were lyophilized at various concentrations. Produced nanofibers were prepared using electrospinning techniques. During the electrospinning process, two auxiliary natural polymers including gelatin and chitosan were used. After synthesis, the physicochemical properties of the nanofibers were confirmed by Scanning Electron Microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray energy diffraction spectroscopy (EDS or EDX), and Differential Scanning Calorimetry (DSC). The electrospun produced nanofibers have continuous and uniform structures. The cytotoxicity assay of these electrospun nanofibers were done on Human dermal fibroblast cell (HDF) and HUVEC cell (Human Umbilical Endothelial Cells) lines and results showed that nanofiber doesn't have any toxicity to normal cell lines. For anti-fungal activity tests, the appropriate amounts of nanofibers containing M. neglectum were placed in media with five different fungal species utilizing two methods: disc diffusion and well diffusion. In vitro results showed that all electrospun nanofibers containing M. neglectum had strong antifungal activity against Candida albicans, Glabrata, Parapacillus, Guillermoides, Crocus fungi species. Our findings also showed that nanofibers containing 86.88% polyvinyl alcohol/ gelatin/ chitosan/ M. neglectum root extract (produced nanofibers) were had better swelling and physicochemical properties and stronger antifungal activity than others (fiber formed with plant root). In a nutshell, natural nanofibers can be used as a beneficial drug delivery system.


Assuntos
Quitosana , Nanofibras , Antifúngicos/farmacologia , Quitosana/química , Quitosana/farmacologia , Células Endoteliais , Gelatina/química , Gelatina/farmacologia , Humanos , Nanofibras/química , Polímeros/química , Álcool de Polivinil , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Cell Mol Biol (Noisy-le-grand) ; 68(11): 1-7, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37114316

RESUMO

Burn wound is one of the major medical and Hydrogels are one of the best wound dressings for burns. Herein, chitosan/Aloe vera hydrogel was prepared and cross-linked by genipin. The nano-liposomes of soy lecithin as a phospholipid containing calendula were added to the hydrogel. The surface morphology and functional groups were evaluated by SEM and FTIR methods, respectively. The average hydrodynamic diameter was calculated by the dynamic light scattering. Also, the nanoliposomes hydrogel containing calendula has a suitable swelling and vapor permeability. The encapsulation rate of calendula was 83 % which indicates a high load of calendula. In vivo release study of hydrogel containing calendula was achieved by the French diffusion cell. Finally, the cytotoxicity (MTT) test, the proliferation and viability of fibroblast cells (L929) were investigated and the results show no cytotoxicity of the hydrogel. for in vitro study, the passage of calendula-containing liposomes through the skin was investigated. Rat abdominal skin was used as a natural membrane. France diffusion cell was used as a two-compartment model to measure the amount of passage. The skin absorption of the calendula begins with a gentle slope and in 24 h approximately 90% of skin absorption has taken place.


Assuntos
Calendula , Quitosana , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Pele/metabolismo , Lipossomos/metabolismo , Bandagens
14.
Reprod Sci ; 28(12): 3361-3379, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34231166

RESUMO

The use of exogenous antioxidants or the combination of them during in vitro oocyte/embryo culture media is reasonable. Co-delivery by nanocarrier has been designed to overcome the limitations of combining them traditionally. In this work, amphiphilic chitosan nanocarrier (ACN) was applied to co-encapsulate melatonin (Mel) and tretinoin (TTN) by the self-assembled method and evaluate their synergistic antioxidant efficacy in mice oocytes/embryos. The formation of single/dual-ACN was confirmed by Fourier-transformed infrared spectroscopy (FT-IR). The average particle diameter, size distribution, polydispersity index (PDI), and zeta potential of them were measured by dynamic light scattering (DLS), and the morphology was evaluated by TEM and SEM technologies. Also, the encapsulation efficiency (EE%) and drug loading content (DL%) of the nanocapsules were determined by UV-vis spectrophotometry. Studies of the in vitro release showed a continued drug release without any bursting effect of Mel+TTN-ACNs compared with single Mel/TTN-ACNs. Then, in both experiments, nuclear staining (Aceto-orcein and Hoechst 33342), fluorescent staining of H2DCFDA, chemiluminescence test, and qRT-PCR technique were performed as in vitro toxicity studies. The results of all these evaluations demonstrated that the dual delivery of Mel and TTN could accumulate a safety (without high-dose toxicity) synergistic anti-oxidative effect in oocyte/embryo by passive controlled, and inhibit intra/extracellular ROS levels by an enhanced intracellular penetration.


Assuntos
Antioxidantes/administração & dosagem , Quitosana/administração & dosagem , Melatonina/administração & dosagem , Mórula/efeitos dos fármacos , Nanocápsulas/administração & dosagem , Oócitos/efeitos dos fármacos , Tretinoína/administração & dosagem , Animais , Antioxidantes/metabolismo , Quitosana/metabolismo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/metabolismo , Sinergismo Farmacológico , Técnicas de Cultura Embrionária/métodos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Feminino , Masculino , Melatonina/metabolismo , Camundongos , Mórula/metabolismo , Oócitos/metabolismo , Tretinoína/metabolismo
15.
Talanta ; 230: 122276, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33934760

RESUMO

Almost 13% of all death in the world is related to cancer. One of the major reasons for failing cancer treatment is the late diagnosis of the tumors. Thus, diagnosis at the early stages could be vital for the treatment. Serum autoantibodies, as tumor markers, are becoming interesting targets due to their medical and biological relevance. Among them, anti-p53 autoantibody in human sera is found to be involved in a variety of cancers. Regarding this issue, a novel and sensitive electrochemical biosensor for detection of anti-p53 autoantibody has been developed. For this purpose, a nanocomposite including thionine (as an electron transfer mediator)/chitosan/nickel hydroxide nanoparticles/electrochemically reduced graphene oxide (Th-CS-Ni(OH)2NPs-ERGO) as a support platform was fabricated on the surface of glassy carbon electrode via a layer-by-layer manner and characterized through common electrochemical and imaging techniques. Then, p53-antigen was immobilized on the nanocomposite and used in an indirect immunoassay with horseradish peroxidase (HRP)-conjugated secondary antibody and H2O2 as the substrate, following the typical Michaelis-Menten kinetics. Under optimized condition, two techniques, including differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) as a label free technique, applied for the biomarker detection. The linear ranges and LODs were obtained 0.1-500 pg mL-1 and 0.001 pg mL-1 using DPV and 5-150 pg mL-1 and 0.007 pg mL-1 using EIS, respectively. Furthermore, the proposed biosensor displayed satisfying stability, selectivity, and reproducibility. According to the results, the presented protocol is promising to develop other electrochemical biosensors.


Assuntos
Técnicas Biossensoriais , Grafite , Autoanticorpos , Técnicas Eletroquímicas , Eletrodos , Humanos , Peróxido de Hidrogênio , Reprodutibilidade dos Testes
16.
Theriogenology ; 171: 1-13, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33993057

RESUMO

As a promising strategy in overcoming drug resistance, the nano drug co-delivery system (NDCDS) can transport two or more drugs into the cell. In this study, we sought to compare the dual and single drug-delivery system, to deliver the optimal dose of Resveratrol (RES) and Tretinoin (TTN) into the in vitro matured oocyte and morula-compact stage embryonic cells. The formation of single (RES/TTN) and dual-drug (RES + TTN)-SLN were confirmed by Uv-vis spectrophotometery, dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) technologies. In two experiments, the oocytes/presumptive zygotes were cultured under various concentrations of the single (RES/TTN) and dual-drug (RES + TTN)-SLN. In vitro toxicity studies, including nuclear staining (Aceto-orcein and Hoechst 33342), H2DCFDA fluorescent staining, chemiluminescence assay, and quantitative reverse transcription-PCR (qRT-PCR) techniques, indicated an excellent oocyte/embryo internalization of RES and TTN. Moreover, when oocytes/embryos were treated with the lowest concentration of RES + TTN-SLN, antioxidants-related genes were upregulated, apoptotic-related genes were downregulated, and intra/extracellular ROS production was reduced. In vitro cytotoxicity studies also demonstrated that single/dual-encapsulation of RES or TTN were safe even at the highest concentration (10 and 5 µM) compared to the control group. To sum it up, both delivery systems of RES and TTN by SLN (dual or single encapsulation) can deliver the optimal dose of RES and TTN into the oocyte/embryo. Where the dual-delivery of RES and TTN even at the lowest concentration (0.25 µM + 0.1 µm) showed a synergistic anti-oxidative effect in oocyte/embryo with a better inhibition of intra/extra-cellular ROS production by an enhanced/controlled intracellular penetration.


Assuntos
Desenvolvimento Embrionário , Preparações Farmacêuticas , Animais , Técnicas de Maturação in Vitro de Oócitos/veterinária , Lipídeos , Camundongos , Mórula , Oócitos , Resveratrol/farmacologia
17.
BMC Complement Med Ther ; 21(1): 111, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827547

RESUMO

BACKGROUND: Interactive dressings are innovatively designed to interact with the wound surface and alter the wound environment to promote wound healing. In the current study, we integrated the physicochemical properties of Poly (caprolactone)/ Poly (vinyl alcohol)/Collagen (PCL/PVA/Col) nanofibers with the biological activities of Momordica charantia pulp extract to develop an efficient wound dressing. The electrospinning method was applied to fabricate the nanofibers, and the prepared wound dressings were thoroughly characterized. RESULTS: SEM imaging showed that the nanofibers were uniform, straight, without any beds with a diameter in the range of 260 to 480 nm. Increasing the concentration of the extract increased the diameter of the nanofibers and also the wettability characteristics while reduced the ultimate tensile strength from 4.37 ± 0.90 MPa for PCL/PVA/Col to 1.62 ± 0.50 MPa for PCL/PVA/Col/Ex 10% (p < 0.05). The in vivo studies showed that the application of the wound dressings significantly enhanced the healing process and the highest wound closure, 94.01 ± 8.12%, was obtained by PCL/PVA/Col/Ex 10% nanofibers (p < 0.05). CONCLUSION: The incorporation of the extract had no significant effects on nanofibers' porosity, water vapor permeability, and swelling characteristics. The in vitro evaluations showed that the fabricated nanofibers were hemocompatible, cytocompatible, and prevent bacterial penetration through the dressing. These findings implied that the PCL/PVA/Col/Ex nanofibers can be applied as the wound dressing materials.


Assuntos
Bandagens , Momordica charantia , Nanofibras/química , Extratos Vegetais/uso terapêutico , Animais , Técnicas de Cultura de Células , Masculino , Álcool de Polivinil/química , Ratos , Cicatrização/efeitos dos fármacos
18.
Bioelectrochemistry ; 139: 107744, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33517204

RESUMO

Prostatic specific antigen (PSA) is known as a biomarker of prostate cancer. In males, prostate cancer is ranked second as leading cause of death out of more than 200 different cancer types1. As a result, early detection of cancer can cause a significant reduction in mortality. PSA concentration directly is related to prostate cancer, so normal serum concentrations in healthy means are 4 ng and above 10 ng as abnormal concentration. Therefore, PSA determination is important to cancer progression. In this study, a free label electrochemical immunosensor was prepared based on a new green platform for the quantitative detection of the PSA. The used platform was formed from quince seed mucilage containing green gold and silver nanoparticles and synthesized by the green method (using Calendula officinalis L. extract). The quince mucilage biopolymer was used as a sub layer to assemble nanoparticles and increase the electrochemical performance. This nanocomposite was used to increase the antibody loading and accelerate the electron transfer, which can increase the biosensor sensitivity. The antibodies of the PSA biomarker were successfully incubated on the green platform. Under the optimal conditions, the electrochemical impedance spectroscopy (EIS) was proportional to the PSA biomarker concentration from 0.1 pg mL-1 to 100 ng mL-1 with low limit of detection (0.078 pg mL-1). The proposed green immunosensor exhibited high stability and reproducibility, which can be used for the quantitative assay of the PSA biomarker in clinical analyses. The results of real sample analysis presented another tool for the PSA biomarker detection in physiologic models.


Assuntos
Técnicas Biossensoriais/métodos , Espectroscopia Dielétrica/métodos , Calicreínas/sangue , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/diagnóstico , Biomarcadores Tumorais/sangue , Calendula/química , Ouro/química , Química Verde/métodos , Humanos , Masculino , Nanopartículas Metálicas/química , Nanocompostos/química , Extratos Vegetais/química , Mucilagem Vegetal/química , Rosaceae/química , Sementes/química , Prata/química
19.
Reprod Sci ; 28(5): 1290-1306, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33030694

RESUMO

Although it is well-recognized that antioxidant nano-encapsulation has many benefits such as minimizing side effects (e.g., high-dose toxicity), the most attention was paid to the hydrophobic antioxidant not hydrophilic. In this regard, we sought to compare two hydrophilic model nanocarriers to deliver the optimal dose of cystamine (Cys) into the in vitro matured oocyte and the first cleavage stages until morula-compact stage embryonic cells. The formation of Cys-loaded solid self-emulsifying lipid (Cys + SLN) and Cys-loaded chitosan shell (Cys-CS-NC) were confirmed by FT-IR and UV-Vis spectrophotometry, dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) technologies. In two experiments, the oocytes/presumptive zygotes were cultured under various concentrations of Cys-SLN and Cys-CS-NC. The results of nuclear staining (aceto-orcein and Hoechst 33342), H2DCFDA fluorescent staining, chemiluminescence test, and quantitative reverse transcription-PCR (qRT-PCR) technique as in vitro toxicity studies demonstrated that adding the lowest dose of Cys-encapsulated in both nanocarriers [Cys-SLN (5 µM) and Cys-CS-NC (10 µM)] to maturation or culture medium could accumulate a strong anti-oxidative effect in oocyte/embryo by controlled release and enhanced intracellular penetration of Cys. In comparison, Cys-SLN (5 µM) is more effective than Cys-CS-NC (10 µM) groups to improve the expression of antioxidant genes (SOD, CAT, GPx) or anti-apoptotic (BCL-2) gene and decreased apoptosis (BAX and caspase-3) or intra-/extracellular ROS levels. In a nutshell, both nanocarriers (CS-NC or SLN) can deliver the lowest dose of Cys into the oocyte/embryo, thus encouraging a better expansion of antioxidant genes and enhancing the development of in vitro oocyte/embryo.


Assuntos
Antioxidantes/administração & dosagem , Cisteamina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Desenvolvimento Embrionário/efeitos dos fármacos , Mórula/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Animais , Feminino , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Nanocápsulas , Projetos Piloto , Técnicas de Reprodução Assistida
20.
Biopreserv Biobank ; 19(3): 184-193, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33351680

RESUMO

Oocyte vitrification, as a vital step in reproductive medicine, is strongly associated with lower development caused by cryodamaging factors, such as oxidative stress. In this study, we evaluated the antioxidative synergistic effects of Melatonin (Mel) and Resveratrol (RES) coencapsulated by solid lipid nanocarriers (SLNs) against the pure antioxidant combination (Mel+RES). In this research, the formation of Mel+RES-SLN was confirmed by Fourier-transformed infrared spectroscopy. The average mean diameter, size distribution, polydispersity index, and zeta potential of particles were measured by Zetasizer, and the morphology was evaluated by scanning electron microscopy. In addition, the encapsulation efficiency (EE%) or drug loading capacity (DL%) of the nanocapsule was determined by spectrophotometric methods. Germinal vesicle (GV)-stage oocytes harvested from 6- to 12-week-old female NMRI mice were randomly divided into seven groups for in vitro studies. In these groups, (0, 10-12 M + 0.5 µM, 10-9 M + 2 µM, or 10-6 M + 10 µM) of Mel+RES/Mel+RES-SLN were added into vitrification media. After thawing, oocytes were matured, fertilized, and cultured for 3 days. Extra/intracellular reactive oxygen species (ROS) levels were measured in in vitro maturation medium after 24 hours. Our results revealed a significant improvement in the normal morphology of warmed GV-stage oocytes, GV breakdown (GVBD) rate, Metaphase II (MII)-stage oocyte formation, fertilization rate, early embryo development, and a significant reduction in intra/extracellular ROS level when vitrification media was supplemented with the lowest Mel+RES-SLN concentration. In vitro studies also demonstrated that the highest concentration of Mel+RES-SLN was safe, without a detrimental effect on embryonic development upon treatment. In conclusion, the lowest concentration of Mel+RES-SLN supplementation in GV-stage oocyte vitrification media improved maturation, fertilization, and embryo development rate and decreased extra/intracellular ROS level through an enhanced/controlled intracellular penetration compared to the pure Mel+RES.


Assuntos
Oócitos , Animais , Criopreservação , Crioprotetores , Feminino , Melatonina , Camundongos , Gravidez , Resveratrol , Vitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...