Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 619: 124-129, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35760008

RESUMO

De novo DNA methylation in early mammalian development depends on the activity of the DNMT3 methyltransferase family. An autoinhibitory mechanism involving the interaction between ADD and the catalytic domains of DNMT3A has been described. ADD is a zinc-coordinating histone-binding domain. The ADD domain of DNMT3A, when bound to a K4-unmethylated histone H3 tail, switches the enzyme to its catalytically active state. DNMT3B is another de novo methyltransferase enzyme with a more strict tissue- and stage-specific expression profile and a slightly different site specificity, lacking cooperative DNA methylation activity. Here, we obtained the crystal structure of the DNMT3B ADD domain, which demonstrated the extended conformation of the autoinhibitory loop even in the absence of the histone H3 tail. The lack of interaction between DNMT3B ADD and the methyltransferase domain was confirmed using an in vitro pull-down assay. The structural rearrangements in the loop also created an additional protein interaction interface leading to the formation of trimers in crystal, which may reflect their possible involvement in some unknown protein-protein interactions. Our results suggest that DNMT3B, in contrast to DNMT3A, has different modes of regulation of its activity that are independent of H3K4 methylation status.


Assuntos
DNA Metiltransferase 3A , Histonas , Animais , Domínio Catalítico , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Histonas/metabolismo , Mamíferos/metabolismo , Ligação Proteica
2.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409222

RESUMO

In Drosophila melanogaster, CLAMP is an essential zinc-finger transcription factor that is involved in chromosome architecture and functions as an adaptor for the dosage compensation complex. Most of the known Drosophila architectural proteins have structural N-terminal homodimerization domains that facilitate distance interactions. Because CLAMP performs architectural functions, we tested its N-terminal region for the presence of a homodimerization domain. We used a yeast two-hybrid assay and biochemical studies to demonstrate that the adjacent N-terminal region between 46 and 86 amino acids is capable of forming homodimers. This region is conserved in CLAMP orthologs from most insects, except Hymenopterans. Biophysical techniques, including nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS), suggested that this domain lacks secondary structure and has features of intrinsically disordered regions despite the fact that the protein structure prediction algorithms suggested the presence of beta-sheets. The dimerization domain is essential for CLAMP functions in vivo because its deletion results in lethality. Thus, CLAMP is the second architectural protein after CTCF that contains an unstructured N-terminal dimerization domain.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Espalhamento a Baixo Ângulo , Fatores de Transcrição/metabolismo , Difração de Raios X
3.
J Vis Exp ; (190)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36622017

RESUMO

Pulldown is an easy and widely used protein-protein interaction assay. However, it has limitations in studying protein complexes that do not assemble effectively in vitro. Such complexes may require co-translational assembly and the presence of molecular chaperones; either they form stable oligomers which cannot dissociate and re-associate in vitro or are unstable without a binding partner. To overcome these problems, it is possible to use a method based on the bacterial co-expression of differentially tagged proteins using a set of compatible vectors followed by the conventional pulldown techniques. The workflow is more time-efficient compared to traditional pulldown because it lacks the time-consuming steps of separate purification of interacting proteins and their following incubation. Another advantage is a higher reproducibility due to a significantly smaller number of steps and a shorter period of time in which proteins that exist within the in vitro environment are exposed to proteolysis and oxidation. The method was successfully applied for studying a number of protein-protein interactions when other in vitro techniques were found to be unsuitable. The method can be used for batch testing protein-protein interactions. Representative results are shown for studies of interactions between BTB domain and intrinsically disordered proteins, and of heterodimers of zinc-finger-associated domains.


Assuntos
Proteínas Intrinsicamente Desordenadas , Chaperonas Moleculares , Reprodutibilidade dos Testes , Ligação Proteica , Chaperonas Moleculares/metabolismo , Proteínas Intrinsicamente Desordenadas/química
4.
BMC Med Genet ; 21(Suppl 1): 165, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092544

RESUMO

BACKGROUND: Hemoglobin is a tetramer consisting of two α-chains and two ß-chains of globin. Hereditary aberrations in the synthesis of one of the globin chains are at the root of thalassemia, one of the most prevalent monogenic diseases worldwide. In humans, in addition to α- and ß-globins, embryonic zeta-globin and fetal γ-globin are expressed. Immediately after birth, the expression of fetal Aγ- and Gγ-globin ceases, and then adult ß-globin is mostly expressed. It has been shown that in addition to erythroid cells, hemoglobin is widely expressed in nonerythroid cells including neurons of the cortex, hippocampus, and cerebellum in rodents; embryonic and adult brain neurons in mice; and mesencephalic dopaminergic brain cells in humans, mice, and rats. Lately, there is growing evidence that different forms of anemia (changes in the number and quality of blood cells) may be involved in (or may accompany) the pathogenesis of various cognitive and mental disorders, such as Alzheimer's and Parkinson's diseases, depression of various severity levels, bipolar disorders, and schizophrenia. Higher hemoglobin concentrations in the blood may lead to hyperviscosity, hypovolemia, and lung diseases, which may cause brain hypoxia and anomalies of brain function, which may also result in cognitive deficits. METHODS: In this study, a search for unannotated single-nucleotide polymorphisms (SNPs) of erythroid genes was initially performed using our previously created and published SNP-TATA_Z-tester, which is a Web service for computational analysis of a given SNP for in silico estimation of its influence on the affinity of TATA-binding protein (TBP) for TATA and TATA-like sequences. The obtained predictions were finally verified in vitro by an electrophoretic mobility shift assay (EMSA). RESULTS: On the basis of these experimental in vitro results and literature data, we studied TATA box SNPs influencing both human erythropoiesis and cognitive abilities. For instance, TBP-TATA affinity in the HbZ promoter decreases 6.6-fold as a result of a substitution in the TATA box (rs113180943), thereby possibly disrupting stage-dependent events of "switching" of hemoglobin genes and thus causing erythroblastosis. Therefore, rs113180943 may be a candidate marker of severe hemoglobinopathies with comorbid cognitive and mental disorders associated with cerebral blood flow disturbances. CONCLUSIONS: The literature data and experimental and computations results suggest that the uncovered candidate SNP markers of erythropoiesis anomalies may also be studied in cohorts of patients with cognitive and/or mental disorders with comorbid erythropoiesis diseases in comparison to conventionally healthy volunteers. Research into the regulatory mechanisms by which the identified SNP markers contribute to the development of hemoglobinopathies and of the associated cognitive deficits will allow physicians not only to take timely and adequate measures against hemoglobinopathies but also to implement strategies preventing cognitive and mental disorders.


Assuntos
Disfunção Cognitiva/genética , Eritropoese/genética , Hemoglobinopatias/genética , Transtornos Mentais/genética , TATA Box/genética , Astrócitos/metabolismo , Sequência de Bases , Encéfalo/metabolismo , Biologia Computacional , Simulação por Computador , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Polimorfismo de Nucleotídeo Único/genética , alfa-Globinas/genética , Globinas beta/genética
5.
Biochimie ; 163: 73-83, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31150756

RESUMO

Human apurinic/apyrimidinic (AP) endonuclease APE1 is a crucial enzyme of the base excision repair (BER) pathway, which is in charge of recognition and initiation of removal of AP-sites in DNA. It is known that some single-nucleotide polymorphism (SNP) variants of APE1 have a reduced activity as compared to wild-type APE1. It has been hypothesized that genetic variation in APE1 might be responsible for an increased risk of some types of cancer. In the present work, analysis of SNPs of the APE1 gene was performed to select the set of variants having substitutions of amino acid residues on the surface of the enzyme globule and in the DNA-binding site, thereby affecting protein-protein interactions or the catalytic reaction, respectively. For seven APE1 variants (R221C, N222H, R237A, G241R, M270T, R274Q, and P311S), conformational dynamics and catalytic activities were examined. The conformational changes in the molecules of APE1 variants and in a DNA substrate were recorded as fluorescence changes of Trp and 2-aminopurine residues, respectively, using the stopped-flow technique. The results made it possible to determine the kinetic mechanism underlying the interactions of the APE1 variants with DNA substrates, to calculate the rate constants of the elementary stages, and to identify the stages of the process affected by mutation.


Assuntos
Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Polimorfismo de Nucleotídeo Único , DNA/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Humanos , Cinética , Modelos Moleculares , Mutação , Conformação Proteica , Especificidade por Substrato
6.
BMC Genomics ; 19(Suppl 3): 0, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29504899

RESUMO

BACKGROUND: The progress of medicine, science, technology, education, and culture improves, year by year, quality of life and life expectancy of the populace. The modern human has a chance to further improve the quality and duration of his/her life and the lives of his/her loved ones by bringing their lifestyle in line with their sequenced individual genomes. With this in mind, one of genome-based developments at the junction of personalized medicine and bioinformatics will be considered in this work, where we used two Web services: (i) SNP_TATA_Comparator to search for alleles with a single nucleotide polymorphism (SNP) that alters the affinity of TATA-binding protein (TBP) for the TATA boxes of human gene promoters and (ii) PubMed to look for retrospective clinical reviews on changes in physiological indicators of reproductive potential in carriers of these alleles. RESULTS: A total of 126 SNP markers of female reproductive potential, capable of altering the affinity of TBP for gene promoters, were found using the two above-mentioned Web services. For example, 10 candidate SNP markers of thrombosis (e.g., rs563763767) can cause overproduction of coagulation inducers. In pregnant women, Hughes syndrome provokes thrombosis with a fatal outcome although this syndrome can be diagnosed and eliminated even at the earliest stages of its development. Thus, in women carrying any of the above SNPs, preventive treatment of this syndrome before a planned pregnancy can reduce the risk of death. Similarly, seven SNP markers predicted here (e.g., rs774688955) can elevate the risk of myocardial infarction. In line with Bowles' lifespan theory, women carrying any of these SNPs may modify their lifestyle to improve their longevity if they can take under advisement that risks of myocardial infarction increase with age of the mother, total number of pregnancies, in multiple pregnancies, pregnancies under the age of 20, hypertension, preeclampsia, menstrual cycle irregularity, and in women smokers. CONCLUSIONS: According to Bowles' lifespan theory-which links reproductive potential, quality of life, and life expectancy-the above information was compiled for those who would like to reduce risks of diseases corresponding to alleles in own sequenced genomes. Candidate SNP markers can focus the clinical analysis of unannotated SNPs, after which they may become useful for people who would like to bring their lifestyle in line with their sequenced individual genomes.


Assuntos
Marcadores Genéticos/genética , Genômica , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Reprodução/genética , Proteína de Ligação a TATA-Box/metabolismo , Linhagem Celular , Feminino , Humanos , Internet , Ligação Proteica
7.
Front Biosci (Schol Ed) ; 9(2): 276-306, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28410120

RESUMO

Year after year, conditions, quality, and duration of human lives have been improving due to the progress of science, technology, education, and medicine, which however has a downside. Owing to improvement in children's nutrition, developmental acceleration occurs that imbalances a child's system. Because of virtual worlds of the Internet, social experience of teenagers expands and clashes with puberty of adolescents. Due to the comfort of cities, urbanization emerges and causes stress to adults because of artificial light, noise, pollution, violations of personal space, and family disruption. At old age, all these factors taken together contribute to loneliness, cancer, diabetes, drug addiction, and sporadic Alzheimer's disease, which shorten the lifespan, as reviewed in the US, 1990-2010. That is why, a person may ask oneself: "What can I do now to keep my health in my old age?" To help them, we provide this comprehensive review on predictive preventive personalized medicine. This branch of molecular medicine uses single nucleotide polymorphisms to prevent diseases on the basis of the difference between the individual and reference human genomes.


Assuntos
Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Genômica/métodos , Medicina de Precisão/métodos , Humanos , Internet , Polimorfismo de Nucleotídeo Único
8.
J Biomol Struct Dyn ; 35(14): 3070-3081, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27667393

RESUMO

It is known that only a single-nucleotide substitution (SNP: a single nucleotide polymorphism) in the sequence of a TATA box can influence the affinity of the interaction of TBP with the TATA box and contribute to the pathogenesis of complex hereditary human diseases and sometimes may be a cause of monogenic diseases (for instance, ß-thalassemia). In the present work, we studied the interaction of human TBP with a double-stranded oligodeoxyribonucleotide (ODN) 15 or 26 bp long identical to a TATA box of promoters of a real-life human gene, TPI or LEP, and labeled with fluorophores TAMRA and FAM. To analyze the interaction of TBP with a TATA box of an ancestral or minor allele (SNP in the TATA box) in real time, we used the stopped-flow method with detection of a Förster resonance energy transfer (FRET) signal. The nature of the resulting kinetic curves reflecting changes in the FRET signal (and therefore of DNA conformation during the interaction with TBP) pointed to a multistage mechanism of the formation of the TBP complex with the TATA-containing ODN. The results showed that with the increasing concentration and length of the ODN, heterogeneity of conformational changes (taking place during the first second of the interaction with TBP) in DNA also increases. In contrast to the initial nonspecific interaction, the subsequent phases strictly depend on TBP concentration: at the TBP:ODN ratio of 10:1, the velocity of change of the FRET signal increases approximately 100-fold.


Assuntos
Alelos , TATA Box , Proteína de Ligação a TATA-Box/química , Sítios de Ligação , Humanos , Cinética , Estrutura Molecular , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteína de Ligação a TATA-Box/metabolismo
9.
Front Immunol ; 7: 130, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27092142

RESUMO

Some variations of human genome [for example, single nucleotide polymorphisms (SNPs)] are markers of hereditary diseases and drug responses. Analysis of them can help to improve treatment. Computer-based analysis of millions of SNPs in the 1000 Genomes project makes a search for SNP markers more targeted. Here, we combined two computer-based approaches: DNA sequence analysis and keyword search in databases. In the binding sites for TATA-binding protein (TBP) in human gene promoters, we found candidate SNP markers of gender-biased autoimmune diseases, including rs1143627 [cachexia in rheumatoid arthritis (double prevalence among women)]; rs11557611 [demyelinating diseases (thrice more prevalent among young white women than among non-white individuals)]; rs17231520 and rs569033466 [both: atherosclerosis comorbid with related diseases (double prevalence among women)]; rs563763767 [Hughes syndrome-related thrombosis (lethal during pregnancy)]; rs2814778 [autoimmune diseases (excluding multiple sclerosis and rheumatoid arthritis) underlying hypergammaglobulinemia in women]; rs72661131 and rs562962093 (both: preterm delivery in pregnant diabetic women); and rs35518301, rs34166473, rs34500389, rs33981098, rs33980857, rs397509430, rs34598529, rs33931746, rs281864525, and rs63750953 (all: autoimmune diseases underlying hypergammaglobulinemia in women). Validation of these predicted candidate SNP markers using the clinical standards may advance personalized medicine.

10.
BMC Genomics ; 17(Suppl 14): 995, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-28105927

RESUMO

BACKGROUND: Aggressiveness in humans is a hereditary behavioral trait that mobilizes all systems of the body-first of all, the nervous and endocrine systems, and then the respiratory, vascular, muscular, and others-e.g., for the defense of oneself, children, family, shelter, territory, and other possessions as well as personal interests. The level of aggressiveness of a person determines many other characteristics of quality of life and lifespan, acting as a stress factor. Aggressive behavior depends on many parameters such as age, gender, diseases and treatment, diet, and environmental conditions. Among them, genetic factors are believed to be the main parameters that are well-studied at the factual level, but in actuality, genome-wide studies of aggressive behavior appeared relatively recently. One of the biggest projects of the modern science-1000 Genomes-involves identification of single nucleotide polymorphisms (SNPs), i.e., differences of individual genomes from the reference genome. SNPs can be associated with hereditary diseases, their complications, comorbidities, and responses to stress or a drug. Clinical comparisons between cohorts of patients and healthy volunteers (as a control) allow for identifying SNPs whose allele frequencies significantly separate them from one another as markers of the above conditions. Computer-based preliminary analysis of millions of SNPs detected by the 1000 Genomes project can accelerate clinical search for SNP markers due to preliminary whole-genome search for the most meaningful candidate SNP markers and discarding of neutral and poorly substantiated SNPs. RESULTS: Here, we combine two computer-based search methods for SNPs (that alter gene expression) {i} Web service SNP_TATA_Comparator (DNA sequence analysis) and {ii} PubMed-based manual search for articles on aggressiveness using heuristic keywords. Near the known binding sites for TATA-binding protein (TBP) in human gene promoters, we found aggressiveness-related candidate SNP markers, including rs1143627 (associated with higher aggressiveness in patients undergoing cytokine immunotherapy), rs544850971 (higher aggressiveness in old women taking lipid-lowering medication), and rs10895068 (childhood aggressiveness-related obesity in adolescence with cardiovascular complications in adulthood). CONCLUSIONS: After validation of these candidate markers by clinical protocols, these SNPs may become useful for physicians (may help to improve treatment of patients) and for the general population (a lifestyle choice preventing aggressiveness-related complications).


Assuntos
Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteína de Ligação a TATA-Box/metabolismo , Alelos , Progressão da Doença , Feminino , Estudos de Associação Genética , Doenças Genéticas Inatas/complicações , Doenças Genéticas Inatas/patologia , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Masculino , Obesidade/complicações , Obesidade/genética , Fenótipo , Prognóstico , Ligação Proteica , Resultado do Tratamento
11.
BMC Genomics ; 16 Suppl 13: S5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26694100

RESUMO

BACKGROUND: Obesity affects quality of life and life expectancy and is associated with cardiovascular disorders, cancer, diabetes, reproductive disorders in women, prostate diseases in men, and congenital anomalies in children. The use of single nucleotide polymorphism (SNP) markers of diseases and drug responses (i.e., significant differences of personal genomes of patients from the reference human genome) can help physicians to improve treatment. Clinical research can validate SNP markers via genotyping of patients and demonstration that SNP alleles are significantly more frequent in patients than in healthy people. The search for biomedical SNP markers of interest can be accelerated by computer-based analysis of hundreds of millions of SNPs in the 1000 Genomes project because of selection of the most meaningful candidate SNP markers and elimination of neutral SNPs. RESULTS: We cross-validated the output of two computer-based methods: DNA sequence analysis using Web service SNP_TATA_Comparator and keyword search for articles on comorbidities of obesity. Near the sites binding to TATA-binding protein (TBP) in human gene promoters, we found 22 obesity-related candidate SNP markers, including rs10895068 (male breast cancer in obesity); rs35036378 (reduced risk of obesity after ovariectomy); rs201739205 (reduced risk of obesity-related cancers due to weight loss by diet/exercise in obese postmenopausal women); rs183433761 (obesity resistance during a high-fat diet); rs367732974 and rs549591993 (both: cardiovascular complications in obese patients with type 2 diabetes mellitus); rs200487063 and rs34104384 (both: obesity-caused hypertension); rs35518301, rs72661131, and rs562962093 (all: obesity); and rs397509430, rs33980857, rs34598529, rs33931746, rs33981098, rs34500389, rs63750953, rs281864525, rs35518301, and rs34166473 (all: chronic inflammation in comorbidities of obesity). Using an electrophoretic mobility shift assay under nonequilibrium conditions, we empirically validated the statistical significance (α < 0.00025) of the differences in TBP affinity values between the minor and ancestral alleles of 4 out of the 22 SNPs: rs200487063, rs201381696, rs34104384, and rs183433761. We also measured half-life (t1/2), Gibbs free energy change (ΔG), and the association and dissociation rate constants, ka and kd, of the TBP-DNA complex for these SNPs. CONCLUSIONS: Validation of the 22 candidate SNP markers by proper clinical protocols appears to have a strong rationale and may advance postgenomic predictive preventive personalized medicine.


Assuntos
Obesidade/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/metabolismo , Marcadores Genéticos , Humanos , Obesidade/metabolismo
12.
Biomed Res Int ; 2015: 359835, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26516624

RESUMO

The use of biomedical SNP markers of diseases can improve effectiveness of treatment. Genotyping of patients with subsequent searching for SNPs more frequent than in norm is the only commonly accepted method for identification of SNP markers within the framework of translational research. The bioinformatics applications aimed at millions of unannotated SNPs of the "1000 Genomes" can make this search for SNP markers more focused and less expensive. We used our Web service involving Fisher's Z-score for candidate SNP markers to find a significant change in a gene's expression. Here we analyzed the change caused by SNPs in the gene's promoter via a change in affinity of the TATA-binding protein for this promoter. We provide examples and discuss how to use this bioinformatics application in the course of practical analysis of unannotated SNPs from the "1000 Genomes" project. Using known biomedical SNP markers, we identified 17 novel candidate SNP markers nearby: rs549858786 (rheumatoid arthritis); rs72661131 (cardiovascular events in rheumatoid arthritis); rs562962093 (stroke); rs563558831 (cyclophosphamide bioactivation); rs55878706 (malaria resistance, leukopenia), rs572527200 (asthma, systemic sclerosis, and psoriasis), rs371045754 (hemophilia B), rs587745372 (cardiovascular events); rs372329931, rs200209906, rs367732974, and rs549591993 (all four: cancer); rs17231520 and rs569033466 (both: atherosclerosis); rs63750953, rs281864525, and rs34166473 (all three: malaria resistance, thalassemia).


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Proteína de Ligação a TATA-Box/genética , Algoritmos , Sítios de Ligação , Marcadores Genéticos , Genoma Humano , Genótipo , Humanos , Internet , Medicina de Precisão/métodos , Regiões Promotoras Genéticas , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...