Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Phys Rev Lett ; 126(15): 153601, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929256

RESUMO

Quantum systems are typically characterized by the inherent fluctuation of their physical observables. Despite this fundamental importance, the investigation of the fluctuations in interacting quantum systems at finite temperature continues to pose considerable theoretical and experimental challenges. Here we report the characterization of atom number fluctuations in weakly interacting Bose-Einstein condensates. Technical fluctuations are mitigated through a combination of nondestructive detection and active stabilization of the cooling sequence. We observe fluctuations reduced by 27% below the canonical expectation for a noninteracting gas, revealing the microcanonical nature of our system. The peak fluctuations have near linear scaling with atom number ΔN_{0,p}^{2}∝N^{1.134} in an experimentally accessible transition region outside the thermodynamic limit. Our experimental results thus set a benchmark for theoretical calculations under typical experimental conditions.

2.
Phys Rev Lett ; 122(16): 163601, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31075024

RESUMO

Fluctuations are a key property of both classical and quantum systems. While the fluctuations are well understood for many quantum systems at zero temperature, the case of an interacting quantum system at finite temperature still poses numerous challenges. Despite intense theoretical investigations of atom number fluctuations in Bose-Einstein condensates, their amplitude in experimentally relevant interacting systems is still not fully understood. Moreover, technical limitations have prevented their experimental investigation to date. Here we report the observation of these fluctuations. Our experiments are based on a stabilization technique, which allows for the preparation of ultracold thermal clouds at the shot noise level, thereby eliminating numerous technical noise sources. Furthermore, we make use of the correlations established by the evaporative cooling process to precisely determine the fluctuations and the sample temperature. This allows us to observe a telltale signature: the sudden increase in fluctuations of the condensate atom number close to the critical temperature.

3.
BMC Pharmacol Toxicol ; 18(1): 50, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28651622

RESUMO

BACKGROUND: Focal hepatic venous outflow obstruction frequently occurs after extended liver resection and leads to a portal hypertension, arterial hypoperfusion and parenchymal necrosis. In this study, we investigated the pharmacological modulation of liver perfusion and hepatic damage in a surgical model of hepatic outflow obstruction after extended liver resection by administration of 5 different drugs in comparison to an operative intervention, splenectomy. METHODS: Male inbred Lewis rats (Lew/Crl) were subjected to right median hepatic vein ligation + 70% partial hepatectomy. Treatment consisted of a splenectomy or the application of saline, carvedilol or isosorbide-5-mononitrate (ISMN) (5 mg · kg-1 respectively 7,2 mg · kg-1 per gavage 12 h-1). The splenectomy was performed during operation. The effect of the treatments on hepatic hemodynamics were measured in non-operated animals, immediately after operation (n = 4/group) and 24 h after operation (n = 5/group). Assessment of hepatic damage (liver enzymes, histology) and liver cell proliferation (BrdU-immunohistochemistry) was performed 24 h after operation. Furthermore sildenafil (10 µg · kg-1 i.p. 12h-1), terlipressin (0.05 mg · kg-1 i.v. 12 h-1) and octreotide (10 µg · kg-1 s.c. 12 h-1) were investigated regarding their effect on hepatic hemodynamics and hepatic damage 24 h after operation (n = 4/group). RESULTS: Carvedilol and ISMN significantly decreased the portal pressure in normal non-operated rats from 11,1 ± 1,1 mmHg (normal rats) to 8,4 ± 0,3 mmHg (carvedilol) respectively 7,4 ± 1,8 mmHg (ISMN). ISMN substantially reduced surgery-induced portal hypertension from 15,4 ± 4,4 mmHg to 9,6 ± 2,3 mmHg. Only splenectomy reduced the portal flow immediately after operation by approximately 25%. No treatment had an immediate effect on the hepatic arterial perfusion. In all treatment groups, portal flow increased by approximately 3-fold within 24 h after operation, whereas hepatic arterial flow decreased substantially. Neither treatment reduced hepatic damage as assessed 24 h after operation. The distribution of proliferating cells appeared very similar in all drug treated groups and the splenectomy group. CONCLUSION: Transient relative reduction of portal pressure did not result in a reduction of hepatic damage. This might be explained by the development of portal hyperperfusion which was accompanied by arterial hypoperfusion.


Assuntos
Hepatectomia , Fígado/irrigação sanguínea , Animais , Anti-Hipertensivos/farmacologia , Carbazóis/farmacologia , Carvedilol , Dinitrato de Isossorbida/análogos & derivados , Dinitrato de Isossorbida/farmacologia , Fígado/efeitos dos fármacos , Fígado/cirurgia , Lipressina/análogos & derivados , Lipressina/farmacologia , Masculino , Octreotida/farmacologia , Pressão na Veia Porta/efeitos dos fármacos , Propanolaminas/farmacologia , Ratos Endogâmicos Lew , Citrato de Sildenafila/farmacologia , Esplenectomia , Terlipressina , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
4.
Phys Rev Lett ; 117(14): 143004, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740781

RESUMO

Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case, the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.75 atoms to improve the clock sensitivity of 10000 atoms by 2.05_{-0.37}^{+0.34} dB. The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based on atomic squeezed vacuum.

5.
Phys Rev Lett ; 117(16): 163201, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792375

RESUMO

Ultracold atomic gases have recently become a driving force in few-body physics due to the observation of the Efimov effect. While initially observed in equal mass systems, one expects even richer few-body physics in the heteronuclear case. In previous experiments with ultracold mixtures of potassium and rubidium, an unexpected nonuniversal behavior of Efimov resonances was observed. In contrast, we measure the scattering length dependent three-body recombination coefficient in ultracold heteronuclear mixtures of ^{39}K-^{87}Rb and ^{41}K-^{87}Rb and do not observe any signatures of Efimov resonances for accessible scattering lengths in either mixture. Our results show good agreement with our theoretical model for the scattering dependent three-body recombination coefficient and reestablish universality across isotopic mixtures.

6.
J Bodyw Mov Ther ; 20(3): 518-24, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27634073

RESUMO

The purpose of this study was to determine the relation between posturally increased intra-abdominal pressure and lower/upper esophageal sphincter pressure changes in patients with gastroesophageal reflux disease. We used high resolution manometry to measure pressure changes in lower and upper esophageal sphincter during bilateral leg rise. We also examined whether the rate of lower and upper esophageal sphincter pressure would increase during leg raise differentially in individuals with versus without normal resting pressure. Fifty eight patients with gastroesophageal reflux disease participated in the study. High resolution manometry was performed in relaxed supine position, then lower and upper esophageal sphincter pressure was measured. Finally, the subjects were instructed to keep their legs lifted while performing 90-degree flexion at the hips and knees and the pressure was measured again. Paired t-test and independent samples t-test were used. There was a significant increase in both lower (P < 0.001) and upper esophageal sphincter pressure (P = 0.034) during leg raise compared to the initial resting position. Individuals with initially higher pressure in lower esophageal sphincter (>10 mmHg) exhibited a greater pressure increase during leg raise than those with initially lower pressure (pressure ≤10 mmHg; P = 0.002). Similarly individuals with higher resting upper esophageal sphincter pressure (>44 mmHg) showed a greater pressure increase during leg raise than those with lower resting pressure (≤44 mmHg; P < 0.001). The results illustrate the influence of postural leg activities on intraesophageal pressure in patients with gastroesophageal reflux disease, indicating by means of high resolution manometry that diaphragmatic postural and sphincter function are likely interrelated in this population.


Assuntos
Esfíncter Esofágico Inferior/fisiologia , Esfíncter Esofágico Superior/fisiologia , Refluxo Gastroesofágico/fisiopatologia , Perna (Membro)/fisiologia , Contração Muscular/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Manometria , Pessoa de Meia-Idade , Postura
7.
Phys Rev Lett ; 117(7): 073604, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563964

RESUMO

We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^{6} is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN

8.
Rev Sci Instrum ; 87(7): 073106, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27475547

RESUMO

Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological developments now allow analog laser stabilization systems to be replaced with digital electronics such as field-programmable gate arrays, which have recently been utilized to develop such locking systems. We have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions. Frequency modulation, lock-in detection, and a proportional-integral-derivative controller are programmed on the field-programmable gate array and only minimal additional components are required to frequency stabilize a laser. The locking system is administered from a host-computer which provides comprehensive, long-distance control through a versatile interface. Various measurements were performed to characterize the system. The linewidth of the locked laser was measured to be 0.7 ± 0.1 MHz with a settling time of 10 ms. The system can thus fully match laser systems currently in use for atom trapping and cooling applications.

9.
Nat Commun ; 6: 8984, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26612105

RESUMO

In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, where a measurement of one subsystem seemingly allows for a prediction of the second subsystem beyond the Heisenberg uncertainty relation. Up to now, continuous-variable EPR correlations have only been created with photons, while the demonstration of such strongly correlated states with massive particles is still outstanding. Here we report on the creation of an EPR-correlated two-mode squeezed state in an ultracold atomic ensemble. The state shows an EPR entanglement parameter of 0.18(3), which is 2.4 s.d. below the threshold 1/4 of the EPR criterion. We also present a full tomographic reconstruction of the underlying many-particle quantum state. The state presents a resource for tests of quantum nonlocality and a wide variety of applications in the field of continuous-variable quantum information and metrology.

10.
Nat Commun ; 6: 6811, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25869121

RESUMO

Quantum mechanics predicts that our physical reality is influenced by events that can potentially happen but factually do not occur. Interaction-free measurements (IFMs) exploit this counterintuitive influence to detect the presence of an object without requiring any interaction with it. Here we propose and realize an IFM concept based on an unstable many-particle system. In our experiments, we employ an ultracold gas in an unstable spin configuration, which can undergo a rapid decay. The object-realized by a laser beam-prevents this decay because of the indirect quantum Zeno effect and thus, its presence can be detected without interacting with a single atom. Contrary to existing proposals, our IFM does not require single-particle sources and is only weakly affected by losses and decoherence. We demonstrate confidence levels of 90%, well beyond previous optical experiments.

11.
Biophys J ; 106(1): 37-46, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24411235

RESUMO

The microaerophilic magnetotactic bacterium Magnetospirillum gryphiswaldense swims along magnetic field lines using a single flagellum at each cell pole. It is believed that this magnetotactic behavior enables cells to seek optimal oxygen concentration with maximal efficiency. We analyze the trajectories of swimming M. gryphiswaldense cells in external magnetic fields larger than the earth's field, and show that each cell can switch very rapidly (in <0.2 s) between a fast and a slow swimming mode. Close to a glass surface, a variety of trajectories were observed, from straight swimming that systematically deviates from field lines to various helices. A model in which fast (slow) swimming is solely due to the rotation of the trailing (leading) flagellum can account for these observations. We determined the magnetic moment of this bacterium using a to our knowledge new method, and obtained a value of (2.0±0.6) × 10(-16) A · m(2). This value is found to be consistent with parameters emerging from quantitative fitting of trajectories to our model.


Assuntos
Magnetospirillum/fisiologia , Modelos Biológicos , Campos Magnéticos , Movimento
12.
Phys Rev Lett ; 113(26): 268101, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615389

RESUMO

We have measured the spatial distribution of motile Escherichia coli inside spherical water droplets emulsified in oil. At low cell concentrations, the cell density peaks at the water-oil interface; at increasing concentration, the bulk of each droplet fills up uniformly while the surface peak remains. Simulations and theory show that the bulk density results from a "traffic" of cells leaving the surface layer, increasingly due to cell-cell scattering as the surface coverage rises above ∼10%. Our findings show similarities with the physics of a rarefied gas in a spherical cavity with attractive walls.


Assuntos
Escherichia coli/fisiologia , Modelos Biológicos , Emulsões , Óleos/química , Propriedades de Superfície , Natação , Água/química
13.
Chirurg ; 84(10): 851-8, 2013 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-24036590

RESUMO

BACKGROUND: Image and video-based results and process control are essential tools of a new teaching concept for conveying surgical skills. The new teaching concept integrates approved teaching principles and new media. METHOD: Every performance of exercises is videotaped and the result photographically recorded. The quality of the process and result becomes accessible for an analysis by the teacher and the student/learner. The learner is instructed to perform a criteria-based self-analysis of the video and image material by themselves. RESULTS: The new learning concept has so far been successfully applied in seven rounds within the newly designed modular class "Intensivkurs Chirurgische Techniken" (Intensive training of surgical techniques). Result documentation and analysis via digital picture was completed by almost every student. The quality of the results was high. Interestingly the result quality did not correlate with the time needed for the exercise. The training success had a lasting effect. CONCLUSION: The new and elaborate concept improves the quality of teaching. In the long run resources for patient care should be saved when training students according to this concept prior to performing tasks in the operating theater. These resources should be allocated for further refining innovative teaching concepts.


Assuntos
Cirurgia Geral/educação , Instruções Programadas como Assunto , Procedimentos Cirúrgicos Operatórios/educação , Técnicas de Sutura/educação , Ensino , Gravação de Videoteipe/tendências , Competência Clínica , Currículo , Alemanha , Humanos , Mentores , Modelos Anatômicos , Modelos Educacionais
14.
Science ; 334(6057): 773-6, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21998255

RESUMO

Interferometers with atomic ensembles are an integral part of modern precision metrology. However, these interferometers are fundamentally restricted by the shot noise limit, which can only be overcome by creating quantum entanglement among the atoms. We used spin dynamics in Bose-Einstein condensates to create large ensembles of up to 10(4) pair-correlated atoms with an interferometric sensitivity -1.61(-1.1)(+0.98) decibels beyond the shot noise limit. Our proof-of-principle results point the way toward a new generation of atom interferometers.

15.
Phys Rev Lett ; 106(24): 240801, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21770559

RESUMO

Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of (87)Rb by applying the recently discovered spin self-rephasing [C. Deutsch et al., Phys. Rev. Lett. 105, 020401 (2010)]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stability of 2.4×10(-11)τ(-1/2), where τ is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.

16.
Phys Rev Lett ; 104(19): 195303, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20866973

RESUMO

Parametric amplification of vacuum fluctuations is crucial in modern quantum optics, enabling the creation of squeezing and entanglement. We demonstrate the parametric amplification of vacuum fluctuations for matter waves using a spinor F=2 87Rb condensate. Interatomic interactions lead to correlated pair creation in the mF=±1 states from an initial mF=0 condensate, which acts as a vacuum for mF≠0. Although this pair creation from a pure mF=0 condensate is ideally triggered by vacuum fluctuations, unavoidable spurious initial mF=±1 atoms induce a classical seed which may become the dominant triggering mechanism. We show that pair creation is insensitive to a classical seed for sufficiently large magnetic fields, demonstrating the dominant role of vacuum fluctuations. The presented system thus provides a direct path towards the generation of nonclassical states of matter.

17.
Phys Rev Lett ; 105(13): 135302, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21230785

RESUMO

Parametric amplification of quantum fluctuations constitutes a fundamental mechanism for spontaneous symmetry breaking. In our experiments, a spinor condensate acts as a parametric amplifier of spin modes, resulting in a twofold spontaneous breaking of spatial and spin symmetry in the amplified clouds. Our experiments permit a precise analysis of the amplification in specific spatial Bessel-like modes, allowing for the detailed understanding of the double symmetry breaking. On resonances that create vortex-antivortex superpositions, we show that the cylindrical spatial symmetry is spontaneously broken, but phase squeezing prevents spin-symmetry breaking. If, however, nondegenerate spin modes contribute to the amplification, quantum interferences lead to spin-dependent density profiles and hence spontaneously formed patterns in the longitudinal magnetization.

18.
J Phys Chem B ; 113(12): 3806-12, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19673070

RESUMO

We performed passive and active microrheology using probe particles in a bath of well-characterized, model hard-sphere colloids in the fluid state over the whole range of volume fractions below the glass transition. The probe and bath particles have nearly the same size. Passive tracking of probe particles yields short-time self-diffusion coefficients. Comparison with literature data demonstrates that the interaction between probe and bath particles is hard-sphere-like. The short-time diffusivities yield one set of microviscosities as a function of volume fraction, which agrees with previous macrorheological measurements of the high-frequency viscosity of hard-sphere colloids. Using optical tweezers, we measure the force on a trapped probe particle as the rest of the sample is translated at constant velocity. This yields a second set of microviscosities at high Péclet numbers. These agree with previous macrorheological measurements of the high-shear viscosity of similar colloids, at shear-rates below the onset of shear-thickening.

19.
Phys Rev Lett ; 103(19): 195302, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-20365935

RESUMO

We analyze the spinor dynamics of a 87Rb F=2 condensate initially prepared in the m(F) = 0 Zeeman sublevel. We show that this dynamics, characterized by the creation of correlated atomic pairs in m(F) = +/-1, presents an intriguing multiresonant magnetic-field dependence induced by the trap inhomogeneity. This dependence is directly linked to the most unstable Bogoliubov spin excitations of the initial m(F) = 0 condensate, showing that, in general, even a qualitative understanding of the pair-creation efficiency in a spinor condensate requires a careful consideration of the confinement.

20.
Opt Express ; 14(7): 3065-72, 2006 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19516447

RESUMO

A ferroelectric liquid crystal spatial light modulator is used to generate up to 24 independently controllable traps in a holographic optical tweezers system using time-multiplexed Fresnel zone plates. For use in biological applications, helical zone plates are used to generate Laguerre-Gaussian laser modes. The high speed switching of the ferroelectric device together with recent advances in computer technology enable fast, smooth movement of traps that can be independently controlled in real time. This is demonstrated by the trapping and manipulation of yeast cells and fungal spores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...