Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(4-1): 044126, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755925

RESUMO

Odd viscoelastic materials are constrained by fewer symmetries than their even counterparts. The breaking of these symmetries allows these materials to exhibit different features, which have attracted considerable attention in recent years. Immersing a bead in such complex fluids allows for probing their physical properties, highlighting signatures of their oddity and exploring the consequences of these broken symmetries. We present the conditions under which the activity of an odd viscoelastic fluid can give rise to linear instabilities in the motion of the probe particle, and we unveil how the features of the probe particle dynamics depend on the oddity and activity of the viscoelastic medium in which it is immersed.

2.
Phys Rev Lett ; 132(16): 161606, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701471

RESUMO

In the hydrodynamic regime, field theories typically have their boost symmetry spontaneously broken due to the presence of a thermal rest frame although the associated Goldstone field does not acquire independent dynamics. We show that this is not the case for Carrollian field theories where the boost Goldstone field plays a central role. This allows us to give a first-principles derivation of the equilibrium currents and dissipative effects of Carrollian fluids. We also demonstrate that the limit of vanishing speed of light of relativistic fluids is a special case of this class of Carrollian fluids. Our results shine light on the thermodynamic properties and thermal partition functions of Carrollian field theories.

3.
Phys Rev E ; 108(2): L023101, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723786

RESUMO

When a body moves through a fluid, it can experience a force orthogonal to its movement called lift force. Odd viscous fluids break parity and time-reversal symmetry, suggesting the existence of an odd lift force on tracer particles, even at vanishing Reynolds numbers and for symmetric geometries. It was previously found that an incompressible odd fluid cannot induce lift force on a tracer particle with no-slip boundary conditions, making signatures of odd viscosity in the two-dimensional bulk elusive. By computing the response matrix for a tracer particle, we show that an odd compressible fluid can produce an odd lift force. Using shell localization, we provide analytic expressions for the drag and odd lift forces acting on the tracer particle in a steady state and also at finite frequency. Importantly, we find that the existence of an odd lift force in a steady state requires taking into account the nonconservation of the fluid mass density due to the coupling between the two-dimensional surface and the three-dimensional bulk fluid.

4.
Phys Rev E ; 105(5-1): 054607, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706288

RESUMO

Active chiral viscoelastic materials exhibit elastic responses perpendicular to the applied stresses, referred to as odd elasticity. We use a covariant formulation of viscoelasticity combined with an entropy production analysis to show that odd elasticity is not only present in active systems but also in broad classes of passive chiral viscoelastic fluids. In addition, we demonstrate that linear viscoelastic chiral solids require activity in order to manifest odd elastic responses. To model the phenomenon of passive odd viscoelasticity we propose a chiral extension of Jeffreys model. We apply our covariant formalism in order to derive the dispersion relations of hydrodynamic modes and obtain clear imprints of odd viscoelastic behavior.

5.
Phys Rev E ; 101(6-1): 062803, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688472

RESUMO

We develop the geometric description of submanifolds in Newton-Cartan spacetime. This provides the necessary starting point for a covariant spacetime formulation of Galilean-invariant hydrodynamics on curved surfaces. We argue that this is the natural geometrical framework to study fluid membranes in thermal equilibrium and their dynamics out of equilibrium. A simple model of fluid membranes that only depends on the surface tension is presented and, extracting the resulting stresses, we show that perturbations away from equilibrium yield the standard result for the dispersion of elastic waves. We also find a generalization of the Canham-Helfrich bending energy for lipid vesicles that takes into account the requirements of thermal equilibrium.

6.
Phys Rev Lett ; 122(14): 141603, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31050455

RESUMO

We show that relativistic magnetohydrodynamics (MHD) can be recast as a novel theory of superfluidity. This new theory formulates MHD just in terms of conservation equations, including dissipative effects, by introducing appropriate variables such as a magnetic scalar potential, and providing necessary and sufficient conditions to obtain equilibrium configurations. We show that this scalar potential can be interpreted as a Goldstone mode originating from the spontaneous breaking of a one-form symmetry, and present the most generic constitutive relations at one derivative order for a parity-preserving plasma in this new superfluid formulation.

7.
Phys Rev Lett ; 109(24): 241101, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368298

RESUMO

We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...