Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1866(9): 1433-1449, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31195049

RESUMO

Recent evidences highlight the importance of mitochondria-nucleus communication for the clinical phenotype of oxidative phosphorylation (OXPHOS) diseases. However, the participation of small non-coding RNAs (sncRNAs) in this communication has been poorly explored. We asked whether OXPHOS dysfunction alters the production of a new class of sncRNAs, mitochondrial tRNA fragments (mt tRFs), and, if so, whether mt tRFs play a physiological role and their accumulation is controlled by the action of mt tRNA modification enzymes. To address these questions, we used a cybrid model of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes), an OXPHOS disease mostly caused by mutation m.3243A>G in the mitochondrial tRNALeu(UUR) gene. High-throughput analysis of small-RNA-Seq data indicated that m.3243A>G significantly changed the expression pattern of mt tRFs. A functional analysis of potential mt tRFs targets (performed under the assumption that these tRFs act as miRNAs) indicated an association with processes that involve the most common affected tissues in MELAS. We present evidences that mt tRFs may be biologically relevant, as one of them (mt i-tRF GluUUC), likely produced by the action of the nuclease Dicer and whose levels are Ago2 dependent, down-regulates the expression of mitochondrial pyruvate carrier 1 (MPC1), promoting the build-up of extracellular lactate. Therefore, our study underpins the idea that retrograde signaling from mitochondria is also mediated by mt tRFs. Finally, we show that accumulation of mt i-tRF GluUUC depends on the modification status of mt tRNAs, which is regulated by the action of stress-responsive miRNAs on mt tRNA modification enzymes.


Assuntos
Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Mitocôndrias/metabolismo , Mutação , RNA de Transferência de Leucina/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação para Baixo , Proteínas de Ligação ao GTP , Regulação da Expressão Gênica , Células HeLa , Humanos , MicroRNAs/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais , Transportadores de Ácidos Monocarboxílicos/genética , Fosforilação Oxidativa , Pequeno RNA não Traduzido , Proteínas de Ligação a RNA , Transdução de Sinais , Transcriptoma , tRNA Metiltransferases
2.
RNA Biol ; 15(9): 1167-1173, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30249152

RESUMO

The MnmE-MnmG complex of Escherichia coli uses either ammonium or glycine as a substrate to incorporate the 5-aminomethyl or 5-carboxymethylaminomethyl group into the wobble uridine of certain tRNAs. Both modifications can be converted into a 5-methylaminomethyl group by the independent oxidoreductase and methyltransferase activities of MnmC, which respectively reside in the MnmC(o) and MnmC(m) domains of this bifunctional enzyme. MnmE and MnmG, but not MnmC, are evolutionarily conserved. Bacillus subtilis lacks genes encoding MnmC(o) and/or MnmC(m) homologs. The glycine pathway has been considered predominant in this typical gram-positive species because only the 5-carboxymethylaminomethyl group has been detected in tRNALysUUU and bulk tRNA to date. Here, we show that the 5-methylaminomethyl modification is prevalent in B. subtilis tRNAGlnUUG and tRNAGluUUC. Our data indicate that B. subtilis has evolved MnmC(o)- and MnmC(m)-like activities that reside in non MnmC homologous protein(s), which suggests that both activities provide some sort of biological advantage.


Assuntos
RNA de Transferência de Glutamina/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , Uridina/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Complexos Multienzimáticos/metabolismo , Mutação , Transferases de Grupo de Um Carbono/genética , Transferases de Grupo de Um Carbono/metabolismo , Processamento Pós-Transcricional do RNA
3.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 3022-3037, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29928977

RESUMO

The pathomechanisms underlying oxidative phosphorylation (OXPHOS) diseases are not well-understood, but they involve maladaptive changes in mitochondria-nucleus communication. Many studies on the mitochondria-nucleus cross-talk triggered by mitochondrial dysfunction have focused on the role played by regulatory proteins, while the participation of miRNAs remains poorly explored. MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) is mostly caused by mutation m.3243A>G in mitochondrial tRNALeu(UUR) gene. Adverse cardiac and neurological events are the commonest causes of early death in m.3243A>G patients. Notably, the incidence of major clinical features associated with this mutation has been correlated to the level of m.3243A>G mutant mitochondrial DNA (heteroplasmy) in skeletal muscle. In this work, we used a transmitochondrial cybrid model of MELAS (100% m.3243A>G mutant mitochondrial DNA) to investigate the participation of miRNAs in the mitochondria-nucleus cross-talk associated with OXPHOS dysfunction. High-throughput analysis of small-RNA-Seq data indicated that expression of 246 miRNAs was significantly altered in MELAS cybrids. Validation of selected miRNAs, including miR-4775 and miR-218-5p, in patient muscle samples revealed miRNAs whose expression declined with high levels of mutant heteroplasmy. We show that miR-218-5p and miR-4775 are direct regulators of fetal cardiac genes such as NODAL, RHOA, ISL1 and RXRB, which are up-regulated in MELAS cybrids and in patient muscle samples with heteroplasmy above 60%. Our data clearly indicate that TGF-ß superfamily signaling and an epithelial-mesenchymal transition-like program are activated in MELAS cybrids, and suggest that down-regulation of miRNAs regulating fetal cardiac genes is a risk marker of heart failure in patients with OXPHOS diseases.


Assuntos
Transição Epitelial-Mesenquimal/genética , Insuficiência Cardíaca/genética , Síndrome MELAS/genética , MicroRNAs/genética , Miocárdio/patologia , RNA de Transferência de Leucina/genética , Linhagem Celular Tumoral , DNA Mitocondrial/genética , Conjuntos de Dados como Assunto , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Coração/crescimento & desenvolvimento , Insuficiência Cardíaca/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome MELAS/complicações , Síndrome MELAS/patologia , MicroRNAs/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Miocárdio/citologia , Miocárdio/metabolismo , Fosforilação Oxidativa , Análise de Sequência de RNA , Transdução de Sinais/genética , Proteínas da Superfamília de TGF-beta/genética , Proteínas da Superfamília de TGF-beta/metabolismo , Regulação para Cima
4.
J Mol Biol ; 430(17): 2822-2842, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29870725

RESUMO

The Escherichia coli homodimeric proteins MnmE and MnmG form a functional complex, MnmEG, that modifies tRNAs using GTP, methylene-tetrahydrofolate, FAD, and glycine or ammonium. MnmE is a tetrahydrofolate- and GTP-binding protein, whereas MnmG is a FAD-binding protein with each protomer composed of the FAD-binding domain, two insertion domains, and the helical C-terminal domain. The detailed mechanism of the MnmEG-mediated reaction remains unclear partially due to incomplete structural information on the free- and substrate-bound forms of the complex. In this study, we show that MnmG can adopt in solution a dimer arrangement (form I) different from that currently considered as the only biologically active (form II). Normal mode analysis indicates that form I can oscillate in a range of open and closed conformations. Using isothermal titration calorimetry and native red electrophoresis, we show that a form-I open conformation, which can be stabilized in vitro by the formation of an interprotomer disulfide bond between the catalytic C277 residues, appears to be involved in the assembly of the MnmEG catalytic center. We also show that residues R196, D253, R436, R554 and E585 are important for the stabilization of form I and the tRNA modification function. We propose that the form I dynamics regulates the alternative access of MnmE and tRNA to the MnmG FAD active site. Finally, we show that the C-terminal region of MnmG contains a sterile alpha motif domain responsible for tRNA-protein and protein-protein interactions.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Transferases de Grupo de Um Carbono/química , Transferases de Grupo de Um Carbono/metabolismo , Multimerização Proteica , RNA de Transferência/química , RNA de Transferência/metabolismo , Domínio Catalítico , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
5.
Sci Rep ; 8(1): 1163, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348686

RESUMO

Human proteins MTO1 and GTPBP3 are thought to jointly catalyze the modification of the wobble uridine in mitochondrial tRNAs. Defects in each protein cause infantile hypertrophic cardiomyopathy with lactic acidosis. However, the underlying mechanisms are mostly unknown. Using fibroblasts from an MTO1 patient and MTO1 silenced cells, we found that the MTO1 deficiency is associated with a metabolic reprogramming mediated by inactivation of AMPK, down regulation of the uncoupling protein 2 (UCP2) and transcription factor PPARγ, and activation of the hypoxia inducible factor 1 (HIF-1). As a result, glycolysis and oxidative phosphorylation are uncoupled, while fatty acid metabolism is altered, leading to accumulation of lipid droplets in MTO1 fibroblasts. Unexpectedly, this response is different from that triggered by the GTPBP3 defect, as GTPBP3-depleted cells exhibit AMPK activation, increased levels of UCP2 and PPARγ, and inactivation of HIF-1. In addition, fatty acid oxidation and respiration are stimulated in these cells. Therefore, the HIF-PPARγ-UCP2-AMPK axis is operating differently in MTO1- and GTPBP3-defective cells, which strongly suggests that one of these proteins has an additional role, besides mitochondrial-tRNA modification. This work provides new and useful information on the molecular basis of the MTO1 and GTPBP3 defects and on putative targets for therapeutic intervention.


Assuntos
Acidose Láctica/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Proteínas de Transporte/genética , Proteínas de Ligação ao GTP/genética , Mitocôndrias/metabolismo , RNA de Transferência/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Acidose Láctica/genética , Acidose Láctica/patologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Proteínas de Transporte/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas de Ligação ao GTP/deficiência , Regulação da Expressão Gênica , Glicólise/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Fosforilação Oxidativa , PPAR gama/genética , PPAR gama/metabolismo , Cultura Primária de Células , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA , Transdução de Sinais , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
6.
Sci Rep ; 7(1): 6209, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740091

RESUMO

Mitochondrial diseases due to mutations in the mitochondrial (mt) DNA are heterogeneous in clinical manifestations but usually include OXPHOS dysfunction. Mechanisms by which OXPHOS dysfunction contributes to the disease phenotype invoke, apart from cell energy deficit, maladaptive responses to mitochondria-to-nucleus retrograde signaling. Here we used five different cybrid models of mtDNA diseases to demonstrate that the expression of the nuclear-encoded mt-tRNA modification enzymes TRMU, GTPBP3 and MTO1 varies in response to specific pathological mtDNA mutations, thus altering the modification status of mt-tRNAs. Importantly, we demonstrated that the expression of TRMU, GTPBP3 and MTO1 is regulated by different miRNAs, which are induced by retrograde signals like ROS and Ca2+ via different pathways. Our data suggest that the up- or down-regulation of the mt-tRNA modification enzymes is part of a cellular response to cope with a stoichiometric imbalance between mtDNA- and nuclear-encoded OXPHOS subunits. However, this miRNA-mediated response fails to provide full protection from the OXPHOS dysfunction; rather, it appears to aggravate the phenotype since transfection of the mutant cybrids with miRNA antagonists improves the energetic state of the cells, which opens up options for new therapeutic approaches.


Assuntos
Proteínas de Transporte/metabolismo , DNA Mitocondrial/genética , Proteínas de Ligação ao GTP/metabolismo , MicroRNAs/genética , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/metabolismo , Osteossarcoma/patologia , tRNA Metiltransferases/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proteínas de Transporte/genética , Proliferação de Células , Proteínas de Ligação ao GTP/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mutação , Osteossarcoma/genética , Osteossarcoma/metabolismo , Fosforilação Oxidativa , Proteínas de Ligação a RNA , Transdução de Sinais , Células Tumorais Cultivadas , tRNA Metiltransferases/genética
7.
PLoS Genet ; 13(7): e1006921, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28732077

RESUMO

Several oxidative phosphorylation (OXPHOS) diseases are caused by defects in the post-transcriptional modification of mitochondrial tRNAs (mt-tRNAs). Mutations in MTO1 or GTPBP3 impair the modification of the wobble uridine at position 5 of the pyrimidine ring and cause heart failure. Mutations in TRMU affect modification at position 2 and cause liver disease. Presently, the molecular basis of the diseases and why mutations in the different genes lead to such different clinical symptoms is poorly understood. Here we use Caenorhabditis elegans as a model organism to investigate how defects in the TRMU, GTPBP3 and MTO1 orthologues (designated as mttu-1, mtcu-1, and mtcu-2, respectively) exert their effects. We found that whereas the inactivation of each C. elegans gene is associated with a mild OXPHOS dysfunction, mutations in mtcu-1 or mtcu-2 cause changes in the expression of metabolic and mitochondrial stress response genes that are quite different from those caused by mttu-1 mutations. Our data suggest that retrograde signaling promotes defect-specific metabolic reprogramming, which is able to rescue the OXPHOS dysfunction in the single mutants by stimulating the oxidative tricarboxylic acid cycle flux through complex II. This adaptive response, however, appears to be associated with a biological cost since the single mutant worms exhibit thermosensitivity and decreased fertility and, in the case of mttu-1, longer reproductive cycle. Notably, mttu-1 worms also exhibit increased lifespan. We further show that mtcu-1; mttu-1 and mtcu-2; mttu-1 double mutants display severe growth defects and sterility. The animal models presented here support the idea that the pathological states in humans may initially develop not as a direct consequence of a bioenergetic defect, but from the cell's maladaptive response to the hypomodification status of mt-tRNAs. Our work highlights the important association of the defect-specific metabolic rewiring with the pathological phenotype, which must be taken into consideration in exploring specific therapeutic interventions.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Ligação ao GTP/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , tRNA Metiltransferases/genética , Animais , Caenorhabditis elegans/genética , Nucléolo Celular/genética , Modelos Animais de Doenças , Transporte de Elétrons/genética , Expressão Gênica/genética , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Mutação , Fosforilação Oxidativa , RNA de Transferência/genética , Proteínas de Ligação a RNA , Transdução de Sinais/genética
8.
PLoS One ; 10(12): e0144273, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26642043

RESUMO

GTPBP3 is an evolutionary conserved protein presumably involved in mitochondrial tRNA (mt-tRNA) modification. In humans, GTPBP3 mutations cause hypertrophic cardiomyopathy with lactic acidosis, and have been associated with a defect in mitochondrial translation, yet the pathomechanism remains unclear. Here we use a GTPBP3 stable-silencing model (shGTPBP3 cells) for a further characterization of the phenotype conferred by the GTPBP3 defect. We experimentally show for the first time that GTPBP3 depletion is associated with an mt-tRNA hypomodification status, as mt-tRNAs from shGTPBP3 cells were more sensitive to digestion by angiogenin than tRNAs from control cells. Despite the effect of stable silencing of GTPBP3 on global mitochondrial translation being rather mild, the steady-state levels and activity of Complex I, and cellular ATP levels were 50% of those found in the controls. Notably, the ATPase activity of Complex V increased by about 40% in GTPBP3 depleted cells suggesting that mitochondria consume ATP to maintain the membrane potential. Moreover, shGTPBP3 cells exhibited enhanced antioxidant capacity and a nearly 2-fold increase in the uncoupling protein UCP2 levels. Our data indicate that stable silencing of GTPBP3 triggers an AMPK-dependent retrograde signaling pathway that down-regulates the expression of the NDUFAF3 and NDUFAF4 Complex I assembly factors and the mitochondrial pyruvate carrier (MPC), while up-regulating the expression of UCP2. We also found that genes involved in glycolysis and oxidation of fatty acids are up-regulated. These data are compatible with a model in which high UCP2 levels, together with a reduction in pyruvate transport due to the down-regulation of MPC, promote a shift from pyruvate to fatty acid oxidation, and to an uncoupling of glycolysis and oxidative phosphorylation. These metabolic alterations, and the low ATP levels, may negatively affect heart function.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Ligação ao GTP/genética , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Escherichia coli/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Glicólise/genética , Células HEK293 , Humanos , Canais Iônicos/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais/genética , Transportadores de Ácidos Monocarboxílicos , Fosforilação Oxidativa , RNA de Transferência de Lisina/metabolismo , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Proteína Desacopladora 2
9.
Hum Mol Genet ; 24(1): 167-84, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25149473

RESUMO

Mitochondrial dysfunction activates mitochondria-to-nucleus signaling pathways whose components are mostly unknown. Identification of these components is important to understand the molecular mechanisms underlying mitochondrial diseases and to discover putative therapeutic targets. MELAS syndrome is a rare neurodegenerative disease caused by mutations in mitochondrial (mt) DNA affecting mt-tRNA(Leu(UUR)). Patient and cybrid cells exhibit elevated oxidative stress. Moreover, mutant mt-tRNAs(Leu(UUR)) lack the taurine-containing modification normally present at the wobble uridine (U34) of wild-type mt-tRNA(Leu(UUR)), which is considered an etiology of MELAS. However, the molecular mechanism is still unclear. We found that MELAS cybrids exhibit a significant decrease in the steady-state levels of several mt-tRNA-modification enzymes, which is not due to transcriptional regulation. We demonstrated that oxidative stress mediates an NFkB-dependent induction of microRNA-9/9*, which acts as a post-transcriptional negative regulator of the mt-tRNA-modification enzymes GTPBP3, MTO1 and TRMU. Down-regulation of these enzymes by microRNA-9/9* affects the U34 modification status of non-mutant tRNAs and contributes to the MELAS phenotype. Anti-microRNA-9 treatments of MELAS cybrids reverse the phenotype, whereas miR-9 transfection of wild-type cells mimics the effects of siRNA-mediated down-regulation of GTPBP3, MTO1 and TRMU. Our data represent the first evidence that an mt-DNA disease can directly affect microRNA expression. Moreover, we demonstrate that the modification status of mt-tRNAs is dynamic and that cells respond to stress by modulating the expression of mt-tRNA-modifying enzymes. microRNA-9/9* is a crucial player in mitochondria-to-nucleus signaling as it regulates expression of nuclear genes in response to changes in the functional state of mitochondria.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ligação ao GTP/genética , Síndrome MELAS/genética , MicroRNAs/metabolismo , Proteínas Mitocondriais/genética , tRNA Metiltransferases/genética , Núcleo Celular/genética , Células Cultivadas , Regulação para Baixo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , RNA/metabolismo , RNA Mitocondrial , RNA de Transferência de Leucina/metabolismo , Proteínas de Ligação a RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
10.
RNA Biol ; 11(12): 1495-507, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25607529

RESUMO

Posttranscriptional modification of the uridine located at the wobble position (U34) of tRNAs is crucial for optimization of translation. Defects in the U34 modification of mitochondrial-tRNAs are associated with a group of rare diseases collectively characterized by the impairment of the oxidative phosphorylation system. Retrograde signaling pathways from mitochondria to nucleus are involved in the pathophysiology of these diseases. These pathways may be triggered by not only the disturbance of the mitochondrial (mt) translation caused by hypomodification of tRNAs, but also as a result of nonconventional roles of mt-tRNAs and mt-tRNA-modifying enzymes. The evolutionary conservation of these enzymes supports their importance for cell and organismal functions. Interestingly, bacterial and eukaryotic cells respond to stress by altering the expression or activity of these tRNA-modifying enzymes, which leads to changes in the modification status of tRNAs. This review summarizes recent findings about these enzymes and sets them within the previous data context.


Assuntos
Escherichia coli/metabolismo , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Uridina/análogos & derivados , Uridina/metabolismo , Anticódon/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Códon/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Transferases de Grupo de Um Carbono/genética , Transferases de Grupo de Um Carbono/metabolismo , Fosforilação Oxidativa , RNA/genética , RNA Mitocondrial , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência Aminoácido-Específico/metabolismo , Transdução de Sinais
11.
Nucleic Acids Res ; 42(4): 2602-23, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24293650

RESUMO

In Escherichia coli, the MnmEG complex modifies transfer RNAs (tRNAs) decoding NNA/NNG codons. MnmEG catalyzes two different modification reactions, which add an aminomethyl (nm) or carboxymethylaminomethyl (cmnm) group to position 5 of the anticodon wobble uridine using ammonium or glycine, respectively. In tRNA(cmnm5s2UUG)(Gln) and tRNA(cmnm5UmAA)(Leu), however, cmnm(5) appears as the final modification, whereas in the remaining tRNAs, the MnmEG products are converted into 5-methylaminomethyl (mnm(5)) through the two-domain, bi-functional enzyme MnmC. MnmC(o) transforms cmnm(5) into nm(5), whereas MnmC(m) converts nm(5) into mnm(5), thus producing an atypical network of modification pathways. We investigate the activities and tRNA specificity of MnmEG and the MnmC domains, the ability of tRNAs to follow the ammonium or glycine pathway and the effect of mnmC mutations on growth. We demonstrate that the two MnmC domains function independently of each other and that tRNA(cmnm5s2UUG)(Gln) and tRNA(cmnm5UmAA)(Leu), are substrates for MnmC(m), but not MnmC(o). Synthesis of mnm(5)s(2)U by MnmEG-MnmC in vivo avoids build-up of intermediates in tRNA(mnm5s2UUU)(Lys). We also show that MnmEG can modify all the tRNAs via the ammonium pathway. Strikingly, the net output of the MnmEG pathways in vivo depends on growth conditions and tRNA species. Loss of any MnmC activity has a biological cost under specific conditions.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , GTP Fosfo-Hidrolases/metabolismo , Complexos Multienzimáticos/metabolismo , Transferases de Grupo de Um Carbono/metabolismo , RNA de Transferência/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Complexos Multienzimáticos/química , Estrutura Terciária de Proteína , RNA de Transferência de Glutamina/metabolismo , RNA de Transferência de Leucina/metabolismo , Especificidade por Substrato
12.
Nucleic Acids Res ; 41(12): 6190-208, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23630314

RESUMO

MnmE is a homodimeric multi-domain GTPase involved in tRNA modification. This protein differs from Ras-like GTPases in its low affinity for guanine nucleotides and mechanism of activation, which occurs by a cis, nucleotide- and potassium-dependent dimerization of its G-domains. Moreover, MnmE requires GTP hydrolysis to be functionally active. However, how GTP hydrolysis drives tRNA modification and how the MnmE GTPase cycle is regulated remains unresolved. Here, the kinetics of the MnmE GTPase cycle was studied under single-turnover conditions using stopped- and quench-flow techniques. We found that the G-domain dissociation is the rate-limiting step of the overall reaction. Mutational analysis and fast kinetics assays revealed that GTP hydrolysis, G-domain dissociation and Pi release can be uncoupled and that G-domain dissociation is directly responsible for the 'ON' state of MnmE. Thus, MnmE provides a new paradigm of how the ON/OFF cycling of GTPases may regulate a cellular process. We also demonstrate that the MnmE GTPase cycle is negatively controlled by the reaction products GDP and Pi. This feedback mechanism may prevent inefficacious GTP hydrolysis in vivo. We propose a biological model whereby a conformational change triggered by tRNA binding is required to remove product inhibition and initiate a new GTPase/tRNA-modification cycle.


Assuntos
Proteínas de Ligação ao GTP/química , RNA de Transferência/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Guanosina Difosfato/metabolismo , Hidrólise , Cinética , Modelos Moleculares , Mutação , Fosfatos/metabolismo , Estrutura Terciária de Proteína
13.
RNA ; 18(10): 1783-95, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22891362

RESUMO

Modifying RNA enzymes are highly specific for substrate-rRNA or tRNA-and the target position. In Escherichia coli, there are very few multisite acting enzymes, and only one rRNA/tRNA dual-specificity enzyme, pseudouridine synthase RluA, has been identified to date. Among the tRNA-modifying enzymes, the methyltransferase responsible for the m(2)A synthesis at purine 37 in a tRNA set still remains unknown. m(2)A is also present at position 2503 in the peptidyl transferase center of 23S RNA, where it is introduced by RlmN, a radical S-adenosyl-L-methionine (SAM) enzyme. Here, we show that E. coli RlmN is a dual-specificity enzyme that catalyzes methylation of both rRNA and tRNA. The ΔrlmN mutant lacks m(2)A in both RNA types, whereas the expression of recombinant RlmN from a plasmid introduced into this mutant restores tRNA modification. Moreover, RlmN performs m(2)A(37) synthesis in vitro using a tRNA chimera as a substrate. This chimera has also proved useful to characterize some tRNA identity determinants for RlmN and other tRNA modification enzymes. Our data suggest that RlmN works in a late step during tRNA maturation by recognizing a precise 3D structure of tRNA. RlmN inactivation increases the misreading of a UAG stop codon. Since loss of m(2)A(37) from tRNA is expected to produce a hyperaccurate phenotype, we believe that the error-prone phenotype exhibited by the ΔrlmN mutant is due to loss of m(2)A from 23S rRNA and, accordingly, that the m(2)A2503 modification plays a crucial role in the proofreading step occurring at the peptidyl transferase center.


Assuntos
Proteínas de Escherichia coli/fisiologia , Metiltransferases/fisiologia , Biossíntese de Proteínas , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo , Sequência de Bases , Catálise , Clonagem Molecular , Proteínas de Escherichia coli/metabolismo , Metiltransferases/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Biossíntese de Proteínas/fisiologia , RNA Ribossômico/química , RNA Ribossômico/genética , RNA de Transferência/química , RNA de Transferência/genética , Reprodutibilidade dos Testes , Especificidade por Substrato
14.
Biochimie ; 94(7): 1510-20, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22386868

RESUMO

Among all RNAs, tRNA exhibits the largest number and the widest variety of post-transcriptional modifications. Modifications within the anticodon stem loop, mainly at the wobble position and purine-37, collectively contribute to stabilize the codon-anticodon pairing, maintain the translational reading frame, facilitate the engagement of the ribosomal decoding site and enable translocation of tRNA from the A-site to the P-site of the ribosome. Modifications at the wobble uridine (U34) of tRNAs reading two degenerate codons ending in purine are complex and result from the activity of two multi-enzyme pathways, the IscS-MnmA and MnmEG pathways, which independently work on positions 2 and 5 of the U34 pyrimidine ring, respectively, and from a third pathway, controlled by TrmL (YibK), that modifies the 2'-hydroxyl group of the ribose. MnmEG is the only common pathway to all the mentioned tRNAs, and involves the GTP- and FAD-dependent activity of the MnmEG complex and, in some cases, the activity of the bifunctional enzyme MnmC. The Escherichia coli MnmEG complex catalyzes the incorporation of an aminomethyl group into the C5 atom of U34 using methylene-tetrahydrofolate and glycine or ammonium as donors. The reaction requires GTP hydrolysis, probably to assemble the active site of the enzyme or to carry out substrate recognition. Inactivation of the evolutionarily conserved MnmEG pathway produces a pleiotropic phenotype in bacteria and mitochondrial dysfunction in human cell lines. While the IscS-MnmA pathway and the MnmA-mediated thiouridylation reaction are relatively well understood, we have limited information on the reactions mediated by the MnmEG, MnmC and TrmL enzymes and on the precise role of proteins MnmE and MnmG in the MnmEG complex activity. This review summarizes the present state of knowledge on these pathways and what we still need to know, with special emphasis on the MnmEG pathway.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , GTP Fosfo-Hidrolases/metabolismo , Transferases de Grupo de Um Carbono/metabolismo , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , RNA de Transferência/metabolismo , Animais , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , GTP Fosfo-Hidrolases/química , Humanos , Transferases de Grupo de Um Carbono/química
15.
RNA ; 18(4): 795-806, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22337945

RESUMO

RsmG is an AdoMet-dependent methyltransferase responsible for the synthesis of m(7)G527 in the 530 loop of bacterial 16S rRNA. This loop is universally conserved, plays a key role in ribosomal accuracy, and is a target for streptomycin binding. Loss of the m(7)G527 modification confers low-level streptomycin resistance and may affect ribosomal functioning. Here, we explore the mechanisms controlling RsmG expression and activity, which may somehow respond to the demand set by the amount of rRNA. We confirm that rsmG is the second member in a bicistronic operon and demonstrate that rsmG also has its own promoter, which appears, in actively growing cells, as a control device to offset both the relatively low stability of RsmG and inhibition of the operon promoter. RsmG levels decrease under conditions that down-regulate rRNA synthesis. However, coordination between rRNA and RsmG expression does not seem to occur at the level of transcription initiation. Instead, it might depend on the activity of an inverted repeated region, located between the rsmG promoter and ribosome binding site, which we show to work as a weak transcriptional terminator. To gain insights into the enzymatic mechanism of RsmG, highly conserved residues were mutated and the abilities of the resulting proteins to confer streptomycin resistance, to modify rRNA, and to bind AdoMet were explored. Our data demonstrate for the first time the critical importance of some residues located in the active site of Escherichia coli RsmG for the m(7)G modification process and suggest a role for them in rRNA binding and catalysis.


Assuntos
Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Metiltransferases/metabolismo , Biocatálise , Escherichia coli/genética , Metiltransferases/genética , Óperon
16.
RNA ; 16(11): 2131-43, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20855540

RESUMO

Transfer RNAs are the most densely modified nucleic acid molecules in living cells. In Escherichia coli, more than 30 nucleoside modifications have been characterized, ranging from methylations and pseudouridylations to more complex additions that require multiple enzymatic steps. Most of the modifying enzymes have been identified, although a few notable exceptions include the 2'-O-methyltransferase(s) that methylate the ribose at the nucleotide 34 wobble position in the two leucyl isoacceptors tRNA(Leu)(CmAA) and tRNA(Leu)(cmnm5UmAA). Here, we have used a comparative genomics approach to uncover candidate E. coli genes for the missing enzyme(s). Transfer RNAs from null mutants for candidate genes were analyzed by mass spectrometry and revealed that inactivation of yibK leads to loss of 2'-O-methylation at position 34 in both tRNA(Leu)(CmAA) and tRNA(Leu)(cmnm5UmAA). Loss of YibK methylation reduces the efficiency of codon-wobble base interaction, as demonstrated in an amber suppressor supP system. Inactivation of yibK had no detectable effect on steady-state growth rate, although a distinct disadvantage was noted in multiple-round, mixed-population growth experiments, suggesting that the ability to recover from the stationary phase was impaired. Methylation is restored in vivo by complementing with a recombinant copy of yibK. Despite being one of the smallest characterized α/ß knot proteins, YibK independently catalyzes the methyl transfer from S-adenosyl-L-methionine to the 2'-OH of the wobble nucleotide; YibK recognition of this target requires a pyridine at position 34 and N6-(isopentenyl)-2-methylthioadenosine at position 37. YibK is one of the last remaining E. coli tRNA modification enzymes to be identified and is now renamed TrmL.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Metiltransferases/metabolismo , RNA Bacteriano/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Anticódon/metabolismo , Sequência de Bases , Biocatálise , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Aminoacil-RNA de Transferência/química
17.
PLoS Biol ; 8(4): e1000354, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20404999

RESUMO

The cysteine desulfurase IscS is a highly conserved master enzyme initiating sulfur transfer via persulfide to a range of acceptor proteins involved in Fe-S cluster assembly, tRNA modifications, and sulfur-containing cofactor biosynthesis. Several IscS-interacting partners including IscU, a scaffold for Fe-S cluster assembly; TusA, the first member of a sulfur relay leading to sulfur incorporation into the wobble uridine of several tRNAs; ThiI, involved in tRNA modification and thiamine biosynthesis; and rhodanese RhdA are sulfur acceptors. Other proteins, such as CyaY/frataxin and IscX, also bind to IscS, but their functional roles are not directly related to sulfur transfer. We have determined the crystal structures of IscS-IscU and IscS-TusA complexes providing the first insight into their different modes of binding and the mechanism of sulfur transfer. Exhaustive mutational analysis of the IscS surface allowed us to map the binding sites of various partner proteins and to determine the functional and biochemical role of selected IscS and TusA residues. IscS interacts with its partners through an extensive surface area centered on the active site Cys328. The structures indicate that the acceptor proteins approach Cys328 from different directions and suggest that the conformational plasticity of a long loop containing this cysteine is essential for the ability of IscS to transfer sulfur to multiple acceptor proteins. The sulfur acceptors can only bind to IscS one at a time, while frataxin and IscX can form a ternary complex with IscU and IscS. Our data support the role of frataxin as an iron donor for IscU to form the Fe-S clusters.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Proteínas de Escherichia coli/química , Proteínas Ferro-Enxofre/química , Conformação Proteica , RNA de Transferência/química , Compostos de Sulfidrila/química , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , RNA de Transferência/metabolismo , Enxofre/química , Enxofre/metabolismo
18.
J Bacteriol ; 191(24): 7614-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19801413

RESUMO

The MnmE-MnmG complex is involved in tRNA modification. We have determined the crystal structure of Escherichia coli MnmG at 2.4-A resolution, mutated highly conserved residues with putative roles in flavin adenine dinucleotide (FAD) or tRNA binding and MnmE interaction, and analyzed the effects of these mutations in vivo and in vitro. Limited trypsinolysis of MnmG suggests significant conformational changes upon FAD binding.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , RNA de Transferência/metabolismo , Regulação Alostérica , Proteínas de Bactérias/genética , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Tripsina/metabolismo
19.
Nucleic Acids Res ; 37(21): 7177-93, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19767610

RESUMO

The wobble uridine of certain bacterial and mitochondrial tRNAs is modified, at position 5, through an unknown reaction pathway that utilizes the evolutionarily conserved MnmE and GidA proteins. The resulting modification (a methyluridine derivative) plays a critical role in decoding NNG/A codons and reading frame maintenance during mRNA translation. The lack of this tRNA modification produces a pleiotropic phenotype in bacteria and has been associated with mitochondrial encephalomyopathies in humans. In this work, we use in vitro and in vivo approaches to characterize the enzymatic pathway controlled by the Escherichia coli MnmE*GidA complex. Surprisingly, this complex catalyzes two different GTP- and FAD-dependent reactions, which produce 5-aminomethyluridine and 5-carboxymethylamino-methyluridine using ammonium and glycine, respectively, as substrates. In both reactions, methylene-tetrahydrofolate is the most probable source to form the C5-methylene moiety, whereas NADH is dispensable in vitro unless FAD levels are limiting. Our results allow us to reformulate the bacterial MnmE*GidA dependent pathway and propose a novel mechanism for the modification reactions performed by the MnmE and GidA family proteins.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , GTP Fosfo-Hidrolases/metabolismo , RNA de Transferência/metabolismo , Uridina/análogos & derivados , Biocatálise , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Evolução Molecular , Flavina-Adenina Dinucleotídeo/metabolismo , GTP Fosfo-Hidrolases/genética , Glicina/metabolismo , Complexos Multienzimáticos/metabolismo , NAD/metabolismo , Transferases de Grupo de Um Carbono , Compostos de Amônio Quaternário/metabolismo , RNA de Transferência/química , RNA de Transferência de Lisina/química , RNA de Transferência de Lisina/metabolismo , Uridina/biossíntese , Uridina/química
20.
Mol Cell Biol ; 28(24): 7514-31, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18852288

RESUMO

Human GTPBP3 is an evolutionarily conserved, multidomain protein involved in mitochondrial tRNA modification. Characterization of its biochemical properties and the phenotype conferred by GTPBP3 inactivation is crucial to understanding the role of this protein in tRNA maturation and its effects on mitochondrial respiration. We show that the two most abundant GTPBP3 isoforms exhibit moderate affinity for guanine nucleotides like their bacterial homologue, MnmE, although they hydrolyze GTP at a 100-fold lower rate. This suggests that regulation of the GTPase activity, essential for the tRNA modification function of MnmE, is different in GTPBP3. In fact, potassium-induced dimerization of the G domain leads to stimulation of the GTPase activity in MnmE but not in GTPBP3. The GTPBP3 N-terminal domain mediates a potassium-independent dimerization, which appears as an evolutionarily conserved property of the protein family, probably related to the construction of the binding site for the one-carbon-unit donor in the modification reaction. Partial inactivation of GTPBP3 by small interfering RNA reduces oxygen consumption, ATP production, and mitochondrial protein synthesis, while the degradation of these proteins slightly increases. It also results in mitochondria with defective membrane potential and increased superoxide levels. These phenotypic traits suggest that GTPBP3 defects contribute to the pathogenesis of some oxidative phosphorylation diseases.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Mitocôndrias/genética , Isoformas de Proteínas/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Processamento Alternativo , Animais , Linhagem Celular , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Éxons , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Nucleotídeos de Guanina/metabolismo , Humanos , Íntrons , Camundongos , Estrutura Molecular , Consumo de Oxigênio , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA de Transferência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA