Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 235(6): 1745-1757, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29572652

RESUMO

RATIONALE: Alcoholism is a serious public health problem throughout the world. Current pharmacotherapies for the treatment of this disorder are poorly effective. Preclinical and clinical findings point to nicotinic acetylcholine receptors (nAChRs) as a promising target for the development of novel and effective medications. Assuage Pharmaceuticals, in collaboration with Torrey Pines Institute for Molecular Studies, has discovered a new class of potent and selective α4ß2 nAChR antagonists. OBJECTIVE: Here, it was hypothesized that α4ß2 nAChR antagonism is a viable approach for treatment of alcohol use disorders. RESULTS: When tested in rats, one lead compound, AP-202, attenuated both operant alcohol and nicotine self-administration in a paradigm in which the two reinforcers were concurrently available. The conotoxin TP2212-59, a selective α3ß4 nAChR antagonist, was only effective in reducing nicotine self-administration. AP-202 also reduced alcohol but not food responding when alcohol was presented as the only reinforcer, whereas the commercially available α4ß2 nAChR antagonist dihydro-ß-erythroidine failed to alter alcohol self-administration. AP-202 did not block relapse-like behavior induced by previously alcohol-associated stimuli or yohimbine stress. In a reinstatement paradigm, in which alcohol seeking was triggered by a nicotine challenge, a behavior successfully inhibited by the nonselective nAChR antagonist mecamylamine, AP-202 was not effective, while pretreatment with TP2212-59 abolished nicotine-induced reinstatement of alcohol seeking. CONCLUSIONS: These findings suggest differential roles for α4ß2 and α3ß4 nAChR on alcohol taking and seeking with selective blockade of α4ß2 nAChR being more implicated in modulating alcohol taking while selective blockade of α3ß4 nAChR is involved in nicotine-induced alcohol seeking.


Assuntos
Consumo de Bebidas Alcoólicas/tratamento farmacológico , Etanol/administração & dosagem , Antagonistas Nicotínicos/uso terapêutico , Ratos Sprague-Dawley/fisiologia , Receptores Nicotínicos/fisiologia , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Relação Dose-Resposta a Droga , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Masculino , Nicotina/farmacologia , Antagonistas Nicotínicos/farmacologia , Ratos , Autoadministração
2.
J Med Chem ; 57(8): 3511-21, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24649848

RESUMO

α-Conotoxins are disulfide-rich peptide neurotoxins that selectively inhibit neuronal nicotinic acetylcholine receptors (nAChRs). The α3ß4 nAChR subtype has been identified as a novel target for managing nicotine addiction. Using a mixture-based positional-scanning synthetic combinatorial library (PS-SCL) with the α4/4-conotoxin BuIA framework, we discovered a highly potent and selective α3ß4 nAChR antagonist. The initial PS-SCL consisted of a total of 113 379 904 sequences that were screened for α3ß4 nAChR inhibition, which facilitated the design and synthesis of a second generation library of 64 individual α-conotoxin derivatives. Eleven analogues were identified as α3ß4 nAChR antagonists, with TP-2212-59 exhibiting the most potent antagonistic activity and selectivity over the α3ß2 and α4ß2 nAChR subtypes. Final electrophysiological characterization demonstrated that TP-2212-59 inhibited acetylcholine evoked currents in α3ß4 nAChRs heterogeneously expressed in Xenopus laevis oocytes with a calculated IC50 of 2.3 nM and exhibited more than 1000-fold selectivity over the α3ß2 and α7 nAChR subtypes. As such, TP-2212-59 is among the most potent α3ß4 nAChRs antagonists identified to date and further demonstrates the utility of mixture-based combinatorial libraries in the discovery of novel α-conotoxin derivatives with refined pharmacological activity.


Assuntos
Técnicas de Química Combinatória/métodos , Conotoxinas/farmacologia , Antagonistas Nicotínicos/síntese química , Receptores Nicotínicos/efeitos dos fármacos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/química , Relação Estrutura-Atividade
3.
Biopolymers ; 102(1): 78-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24122487

RESUMO

The α4ß2 nicotinic acetylcholine receptor (nAChR) is an important target for currently approved smoking cessation therapeutics. However, the development of highly selective α4ß2 nAChR antagonists remains a significant challenge. α-Conotoxin GID is an antagonist of α4ß2 nAChRs, though it is significantly more potent toward the α3ß2 and α7 subtypes. With the goal of obtaining further insights into α-conotoxin GID/nAChR interactions that could lead to the design of GID analogues with improved affinity for α4ß2 nAChRs, we built a homology model of the GID/α4ß2 complex using an X-ray co-crystal structure of an α-conotoxin/acetylcholine binding protein (AChBP) complex. Several additional interactions that could potentially enhance the affinity of GID for α4ß2 nAChRs were observed in our model, which led to the design and synthesis of 22 GID analogues. Seven analogues displayed inhibitory activity toward α4ß2 nAChRs that was comparable to GID. Significantly, both GID[A10S] and GID[V13I] demonstrated moderately improved selectivity toward α4ß2 over α3ß2 when compared with GID, while GID[V18N] exhibited no measurable inhibitory activity for the α3ß2 subtype, yet retained inhibitory activity for α4ß2. In this regard, GID[V18N] is the most α4ß2 nAChR selective α-conotoxin analogue identified to date.


Assuntos
Conotoxinas/síntese química , Conotoxinas/farmacologia , Desenho de Fármacos , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Conotoxinas/química , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ratos , Receptores Nicotínicos/química , Transfecção
4.
Methods Mol Biol ; 1081: 13-34, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24014431

RESUMO

α-Conotoxins are peptide neurotoxins isolated from the venom ducts of carnivorous marine cone snails that exhibit exquisite pharmacological potency and selectivity for various nicotinic acetylcholine receptor subtypes. As such, they are important research tools and drug leads for treating various diseases of the central nervous system, including pain and tobacco addiction. Despite their therapeutic potential, the chemical synthesis of α-conotoxins for use in structure-activity relationship studies is complicated by the possibility of three disulfide bond isomers, where inefficient folding methods can lead to a poor recovery of the pharmacologically active isomer. In order to achieve higher yields of the native isomer, especially in high-throughput syntheses it is necessary to select appropriate oxidative folding conditions. Moreover, the poor biochemical stability exhibited by α-conotoxins limits their general therapeutic applicability in vivo. Numerous strategies to enhance their stability including the substitution of disulfide bond with diselenide bond and N-to-C cyclization via an oligopeptide spacer have successfully overcome these limitations. This chapter describes methods for performing both selective and nonselective disulfide bond oxidation strategies for controlling the yields and formation of α-conotoxin disulfide bond isomers, as well as methods for the production of highly stable diselenide-containing and N-to-C cyclized conotoxin analogs.


Assuntos
Bloqueadores dos Canais de Cálcio/química , Conotoxinas/química , Bloqueadores dos Canais de Cálcio/síntese química , Conotoxinas/síntese química , Ciclização , Dissulfetos/química , Oxirredução , Peptídeos/química , Técnicas de Síntese em Fase Sólida
5.
Methods Mol Biol ; 1047: 65-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23943478

RESUMO

The use of the tert-butyloxycarbonyl (Boc) as the Nα-amino protecting group in peptide synthesis can be advantageous in several cases, such as synthesis of hydrophobic peptides and peptides containing ester and thioester moieties. The primary challenge of using Boc SPPS is the need for treatment of the resin-bound peptide with hazardous hydrogen fluoride (HF), which requires special equipment.


Assuntos
Aminoácidos/química , Ésteres do Ácido Fórmico/química , Peptídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos
6.
ACS Comb Sci ; 15(3): 153-61, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23414173

RESUMO

Marine cone snail venoms consist of large, naturally occurring combinatorial libraries of disulfide-constrained peptide neurotoxins known as conotoxins, which have profound potential in the development of analgesics. In this study, we report a synthetic combinatorial strategy that probes the hypervariable regions of conotoxin frameworks to discover novel analgesic agents by utilizing high diversity mixture-based positional-scanning synthetic combinatorial libraries (PS-SCLs). We hypothesized that the direct in vivo testing of these mixture-based combinatorial library samples during the discovery phase would facilitate the identification of novel individual compounds with desirable antinociceptive profiles while simultaneously eliminating many compounds with poor activity or liabilities of locomotion and respiration. A PS-SCL was designed based on the α-conotoxin RgIA-ΔR n-loop region and consisted of 10,648 compounds systematically arranged into 66 mixture samples. Mixtures were directly screened in vivo using the mouse 55 °C warm-water tail-withdrawal assay, which allowed deconvolution of amino acid residues at each position that confer antinociceptive activity. A second generation library of 36 individual α-conotoxin analogues was synthesized using systematic combinations of amino acids identified from PS-SCL deconvolution and further screened for antinociceptive activity. Six individual analogues exhibited comparable antinociceptive activity to that of the recognized analgesic α-conotoxin RgIA-ΔR, and were selected for further examination of antinociceptive, respiratory, and locomotor effects. Three lead compounds were identified that produced dose-dependent antinociception without significant respiratory depression or decreased locomotor activity. Our results represent a unique approach for rapidly developing novel lead α-conotoxin analogues as low-liability analgesics with promising therapeutic potential.


Assuntos
Analgésicos/farmacologia , Técnicas de Química Combinatória , Conotoxinas/farmacologia , Descoberta de Drogas , Medição da Dor/efeitos dos fármacos , Sequência de Aminoácidos , Analgésicos/administração & dosagem , Analgésicos/química , Animais , Conotoxinas/administração & dosagem , Conotoxinas/química , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Alinhamento de Sequência
7.
J Pept Sci ; 19(1): 16-24, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193084

RESUMO

α-Conotoxins are peptide neurotoxins that selectively inhibit various subtypes of nicotinic acetylcholine receptors. They are important research tools for studying numerous pharmacological disorders, with profound potential for developing drug leads for treating pain, tobacco addiction, and other conditions. They are characterized by the presence of two disulfide bonds connected in a globular arrangement, which stabilizes a bioactive helical conformation. Despite extensive structure-activity relationship studies that have produced α-conotoxin analogs with increased potency and selectivity towards specific nicotinic acetylcholine receptor subtypes, the efficient production of diversity-oriented α-conotoxin combinatorial libraries has been limited by inefficient folding and purification procedures. We have investigated the optimized conditions for the reliable folding of α-conotoxins using simplified oxidation procedures for use in the accelerated production of synthetic combinatorial libraries of α-conotoxins. To this end, the effect of co-solvent, redox reagents, pH, and temperature on the proportion of disulfide bond isomers was determined for α-conotoxins exhibiting commonly known Cys loop spacing frameworks. In addition, we have developed high-throughput 'semi-purification' methods for the quick and efficient parallel preparation of α-conotoxin libraries for use in accelerated structure-activity relationship studies. Our simplified procedures represent an effective strategy for the preparation of large arrays of correctly folded α-conotoxin analogs and permit the rapid identification of active hits directly from high-throughput pharmacological screening assays.


Assuntos
Conotoxinas/química , Dobramento de Proteína , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Ensaios de Triagem em Larga Escala , Espectrometria de Massas , Dados de Sequência Molecular , Oxirredução , Conformação Proteica , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
8.
Antioxid Redox Signal ; 14(1): 65-76, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20649464

RESUMO

Modification of α-conotoxin frameworks through cyclization via an oligopeptide linker has previously been shown as an effective strategy for improving in vivo stability. We have extended this strategy by investigating cyclic analogs of α-conotoxin AuIB, a selective α(3)ß(4) nicotinic acetylcholine receptor (nAChR) antagonist, to examine a range of oligopeptide linker lengths on the oxidative formation of disulfide bonds, activity at nAChRs, and stability to degradation by chymotrypsin. Upon nondirected random oxidation, the ribbon isomer formed preferentially with the globular isomer occurring as a minor by-product. Therefore, a regioselective disulfide bond forming strategy was used to prepare the cAuIB-2 globular isomer in high yield and purity. The cAuIB-2 globular isomer exhibited a threefold decrease in activity for the α(3)ß(4) nAChR compared to wild-type-AuIB, although it was selective for α(3)ß(4) over α(7) and α(4)ß(2) subtypes. On the other hand, the cAuIB-2 ribbon isomer was shown to be inactive at all three nAChR subtypes. Nonetheless, all of the cyclic analogs were found to be significantly more stable to degradation by chymotrypsin than wild-type AuIB. As such, the cAuIB-2 globular isomer could constitute a useful probe for studying the role of the α(3)ß(4) nAChR in a range of in vivo experimental paradigms.


Assuntos
Conotoxinas/química , Conotoxinas/farmacologia , Receptores Nicotínicos/metabolismo , Células Cultivadas , Conotoxinas/síntese química , Ciclização , Dissulfetos/química , Estabilidade de Medicamentos , Humanos , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade
9.
J Am Chem Soc ; 132(10): 3514-22, 2010 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-20163143

RESUMO

Alpha-conotoxins are tightly folded miniproteins that antagonize nicotinic acetylcholine receptors (nAChR) with high specificity for diverse subtypes. Here we report the use of selenocysteine in a supported phase method to direct native folding and produce alpha-conotoxins efficiently with improved biophysical properties. By replacing complementary cysteine pairs with selenocysteine pairs on an amphiphilic resin, we were able to chemically direct all five structural subclasses of alpha-conotoxins exclusively into their native folds. X-ray analysis at 1.4 A resolution of alpha-selenoconotoxin PnIA confirmed the isosteric character of the diselenide bond and the integrity of the alpha-conotoxin fold. The alpha-selenoconotoxins exhibited similar or improved potency at rat diaphragm muscle and alpha3beta4, alpha7, and alpha1beta1 deltagamma nAChRs expressed in Xenopus oocytes plus improved disulfide bond scrambling stability in plasma. Together, these results underpin the development of more stable and potent nicotinic antagonists suitable for new drug therapies, and highlight the application of selenocysteine technology more broadly to disulfide-bonded peptides and proteins.


Assuntos
Conotoxinas/química , Antagonistas Nicotínicos/química , Receptores Nicotínicos/química , Sequência de Aminoácidos , Animais , Conotoxinas/síntese química , Conotoxinas/farmacologia , Cristalografia por Raios X , Diafragma/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Contração Muscular/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Oócitos/efeitos dos fármacos , Dobramento de Proteína , Estabilidade Proteica , Ratos , Receptores Nicotínicos/metabolismo , Resinas Sintéticas/química , Selenocisteína/química , Relação Estrutura-Atividade , Xenopus
10.
Toxins (Basel) ; 2(6): 1471-99, 2010 06.
Artigo em Inglês | MEDLINE | ID: mdl-22069647

RESUMO

α-Conotoxins are peptide neurotoxins isolated from venomous marine cone snails that are potent and selective antagonists for different subtypes of nicotinic acetylcholine receptors (nAChRs). As such, they are valuable probes for dissecting the role that nAChRs play in nervous system function. In recent years, extensive insight into the binding mechanisms of α-conotoxins with nAChRs at the molecular level has aided in the design of synthetic analogs with improved pharmacological properties. This review examines the structure-activity relationship studies involving α-conotoxins as research tools for studying nAChRs in the central and peripheral nervous systems and their use towards the development of novel therapeutics.


Assuntos
Conotoxinas/química , Neurotoxinas/química , Antagonistas Nicotínicos/química , Receptores Nicotínicos/metabolismo , Animais , Conotoxinas/genética , Conotoxinas/farmacocinética , Humanos , Mutação , Neurotoxinas/genética , Neurotoxinas/farmacocinética , Antagonistas Nicotínicos/farmacocinética , Conformação Proteica , Relação Estrutura-Atividade
11.
Biopolymers ; 94(3): 307-13, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20013812

RESUMO

alpha-Conotoxins are multiple disulfide bond containing peptides that are isolated from venomous marine cone snails. They display remarkable selectivity for different subtypes of nicotinic acetylcholine receptors (nAChRs). While alpha-conotoxins display poor resistance to in vivo degradation by proteases, which limits their use as drug leads, N-to-C cyclization via an oligopeptide spacer unit has been previously shown to improve stability. However, the effect of N-to-C cyclization on the formation of the disulfide bond framework is not fully understood. Four N-to-C cyclic analogs of alpha-conotoxin ImI; cImI-A, cImI-betaA, cImI-AG, and cImI-AGG were synthesized to evaluate the effect of oligopeptide spacer length on disulfide bond selectivity and stability to proteolysis. Different ratios of disulfide bond isomers were obtained for each analog using a nonselective random disulfide bond forming strategy, which was dependent on the length of the spacer. To identify each isomer obtained using the random strategy, and to gain access to disulfide bond isomers otherwise unattainable using the random strategy, both the native (globular) and ribbon isomers were synthesized in good yield and purity using a selective orthogonal cysteine protecting group strategy. As such, a random oxidation strategy showed a clear preference for the ribbon isomer in cImI-A. The cyclic globular isomers showed a high resistance to enzymatic degradation compared to the ribbon isomers, with the cImI-A and cImI-AG globular isomers demonstrating the highest stability. These results suggest that cyclization can improve the biochemical stability of conotoxins with potential applications in the development of drugs.


Assuntos
Conotoxinas/química , Dissulfetos/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Conotoxinas/genética , Isomerismo , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/genética , Conformação Proteica
12.
J Biol Chem ; 285(3): 1809-21, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19901032

RESUMO

alpha-Conotoxins are peptide neurotoxins isolated from venomous cone snails that display exquisite selectivity for different subtypes of nicotinic acetylcholine receptors (nAChR). They are valuable research tools that have profound implications in the discovery of new drugs for a myriad of neuropharmacological conditions. They are characterized by a conserved two-disulfide bond framework, which gives rise to two intervening loops of extensively mutated amino acids that determine their selectivity for different nAChR subtypes. We have used a multistep synthetic combinatorial approach using alpha-conotoxin ImI to develop potent and selective alpha(7) nAChR antagonists. A positional scan synthetic combinatorial library was constructed based on the three residues of the n-loop of alpha-conotoxin ImI to give a total of 10,648 possible combinations that were screened for functional activity in an alpha(7) nAChR Fluo-4/Ca2+ assay, allowing amino acids that confer antagonistic activity for this receptor to be identified. A second series of individual alpha-conotoxin analogs based on the combinations of defined active amino acid residues from positional scan synthetic combinatorial library screening data were synthesized. Several analogs exhibited significantly improved antagonist activity for the alpha(7) nAChR compared with WT-ImI. Binding interactions between the analogs and the alpha(7) nAChR were explored using a homology model of the amino-terminal domain based on a crystal structure of an acetylcholine-binding protein. Finally, a third series of refined analogs was synthesized based on modeling studies, which led to several analogs with refined pharmacological properties. Of the 96 individual alpha-conotoxin analogs synthesized, three displayed > or =10-fold increases in antagonist potency compared with WT-ImI.


Assuntos
Conotoxinas/química , Conotoxinas/farmacologia , Descoberta de Drogas , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Técnicas de Química Combinatória , Conotoxinas/síntese química , Conotoxinas/metabolismo , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Antagonistas Nicotínicos/síntese química , Antagonistas Nicotínicos/metabolismo , Receptores Nicotínicos/química , Homologia de Sequência de Aminoácidos , Receptor Nicotínico de Acetilcolina alfa7
14.
J Med Chem ; 49(22): 6561-8, 2006 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17064074

RESUMO

Conotoxins, disulfide-rich peptides from the venom of cone snails, have created much excitement over recent years due to their potency and specificity for ion channels and their therapeutic potential. One recently identified conotoxin, MrIA, a 13-residue member of the chi-conotoxin family, inhibits the human norepinephrine transporter (NET) and has potential applications in the treatment of pain. In the current study, we show that the beta-hairpin structure of native MrIA is retained in a synthetic cyclic version, as is biological activity at the NET. Furthermore, the cyclic version has increased resistance to trypsin digestion relative to the native peptide, an intriguing result because the cleavage site for the trypsin is not close to the cyclization site. The use of peptides as drugs is generally hampered by susceptibility to proteolysis, and so, the increase in enzymatic stability against trypsin observed in the current study may be useful in improving the therapeutic potential of MrIA. Furthermore, the structure reported here for cyclic MrIA represents a new topology among a growing number of circular disulfide-rich peptides.


Assuntos
Conotoxinas/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/efeitos dos fármacos , Animais , Ligação Competitiva/efeitos dos fármacos , Células COS , Chlorocebus aethiops , Conotoxinas/química , Ciclização , Hidrólise , Ligantes , Espectroscopia de Ressonância Magnética , Oxirredução , Peptídeo Hidrolases/química , Conformação Proteica , Dobramento de Proteína , Ensaio Radioligante
15.
J Biol Chem ; 281(20): 14136-43, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16500898

RESUMO

Disulfide bonds are important structural motifs that play an essential role in maintaining the conformational stability of many bioactive peptides. Of particular importance are the conotoxins, which selectively target a wide range of ion channels that are implicated in numerous disease states. Despite the enormous potential of conotoxins as therapeutics, their multiple disulfide bond frameworks are inherently unstable under reducing conditions. Reduction or scrambling by thiol-containing molecules such as glutathione or serum albumin in intracellular or extracellular environments such as blood plasma can decrease their effectiveness as drugs. To address this issue, we describe a new class of selenoconotoxins where cysteine residues are replaced by selenocysteine to form isosteric and nonreducible diselenide bonds. Three isoforms of alpha-conotoxin ImI were synthesized by t-butoxycarbonyl chemistry with systematic replacement of one ([Sec(2,8)]ImI or [Sec(3,12)]ImI), or both ([Sec(2,3,8,12)]ImI) disulfide bonds with a diselenide bond. Each analogue demonstrated remarkable stability to reduction or scrambling under a range of chemical and biological reducing conditions. Three-dimensional structural characterization by NMR and CD spectroscopy indicates conformational preferences that are very similar to those of native ImI, suggesting fully isomorphic structures. Additionally, full bioactivity was retained at the alpha7 nicotinic acetylcholine receptor, with each selenoanalogue exhibiting a dose-response curve that overlaps with wild-type ImI, thus further supporting an isomorphic structure. These results demonstrate that selenoconotoxins can be used as highly stable scaffolds for the design of new drugs.


Assuntos
Conotoxinas/metabolismo , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Conotoxinas/química , Dissulfetos/química , Desenho de Fármacos , Eletrofisiologia , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/metabolismo , Peptídeos/química , Compostos de Selênio/química , Compostos de Sulfidrila/química , Xenopus , Receptor Nicotínico de Acetilcolina alfa7
16.
Curr Protein Pept Sci ; 6(3): 221-40, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15974949

RESUMO

The complex mixture of biologically active peptides that constitute the venom of Conus species provides a rich source of ion channel neurotoxins. These peptides, commonly known as conotoxins, exhibit a high degree of selectivity and potency for different ion channels and their subtypes making them invaluable tools for unravelling the secrets of the nervous system. Furthermore, several conotoxin molecules have profound applications in drug discovery, with some examples currently undergoing clinical trials. Despite their relatively easy access by chemical synthesis, rapid access to libraries of conotoxin analogues for use in structure-activity relationship studies still poses a significant limitation. This is exacerbated in conotoxins containing multiple disulfide bonds, which often require synthetic strategies utilising several steps. This review will examine the structure and activity of some of the known classes of conotoxins and will highlight their potential as neuropharmacological tools and as drug leads. Some of the classical and more recent approaches to the chemical synthesis of conotoxins, particularly with respect to the controlled formation of disulfide bonds will be discussed in detail. Finally, some examples of structure-activity relationship studies will be discussed, as well as some novel approaches for designing conotoxin analogues.


Assuntos
Conotoxinas/química , Conotoxinas/farmacologia , Sequência de Aminoácidos , Animais , Conotoxinas/classificação , Conotoxinas/genética , Dissulfetos/química , Desenho de Fármacos , Métodos , Modelos Moleculares , Dados de Sequência Molecular , Sistema Nervoso/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA