Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 42(3): 1442-60, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24185701

RESUMO

Systems scale models provide the foundation for an effective iterative cycle between hypothesis generation, experiment and model refinement. Such models also enable predictions facilitating the understanding of biological complexity and the control of biological systems. Here, we demonstrate the reconstruction of a globally predictive gene regulatory model from public data: a model that can drive rational experiment design and reveal new regulatory mechanisms underlying responses to novel environments. Specifically, using ∼ 1500 publically available genome-wide transcriptome data sets from Saccharomyces cerevisiae, we have reconstructed an environment and gene regulatory influence network that accurately predicts regulatory mechanisms and gene expression changes on exposure of cells to completely novel environments. Focusing on transcriptional networks that induce peroxisomes biogenesis, the model-guided experiments allow us to expand a core regulatory network to include novel transcriptional influences and linkage across signaling and transcription. Thus, the approach and model provides a multi-scalar picture of gene dynamics and are powerful resources for exploiting extant data to rationally guide experimentation. The techniques outlined here are generally applicable to any biological system, which is especially important when experimental systems are challenging and samples are difficult and expensive to obtain-a common problem in laboratory animal and human studies.


Assuntos
Redes Reguladoras de Genes , Biologia de Sistemas/métodos , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética
2.
Eur J Immunol ; 41(7): 1934-40, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21538346

RESUMO

The immunostimulatory properties conferred by vaccine adjuvants require caspase-1 for processing of IL-1ß and IL-18. Caspase-1 is activated in response to a breach of the cytosolic compartment by microbes and the process is initiated by intracellular pattern recognition receptors within inflammasomes. Listeria monocytogenes is detected in the cytosol by the NLRC4, NLRP3 and AIM2 inflammasomes. NLRC4 is activated by flagellin, and L. monocytogenes evades NLRC4 by repressing flagellin expression. We generated an L. monocytogenes strain that was forced to express flagellin in the host cell cytosol. This strain hyperactivated caspase-1 and was preferentially cleared via NLRC4 detection in an IL-1ß/IL-18 independent manner. We also created a strain of L. monocytogenes with forced expression of another NLRC4 agonist, PrgJ, from the Type III secretion system of Salmonella typhimurium. Forced expression of flagellin or PrgJ resulted in attenuation, yet both strains conferred protective immunity in mice against lethal challenge with L. monocytogenes. This work is the first demonstration of specific targeting of the caspase-1 activation pathway to generate a safe and potent L. monocytogenes-based vaccine. Moreover, the attenuated strains with embedded flagellin or PrgJ adjuvants represent attractive vectors for vaccines aimed at eliciting T-cell responses.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Vacinas Bacterianas , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 1/metabolismo , Listeria monocytogenes/imunologia , Listeria monocytogenes/metabolismo , Adjuvantes Imunológicos , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Sistemas de Secreção Bacterianos/genética , Vacinas Bacterianas/imunologia , Células Cultivadas , Flagelina/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Salmonella typhimurium/imunologia
3.
PLoS One ; 5(8): e11953, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20694151

RESUMO

Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for beta-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function. The assays employed include growth in the presence of fatty acids, and confocal imaging and flow cytometry through the induction process. In addition to the classical phenotypes associated with loss of peroxisomal functions, these studies identified 169 genes required for robust signaling, transcription, normal peroxisomal development and morphologies, and transmission of peroxisomes to daughter cells. These gene products are localized throughout the cell, and many have indirect connections to peroxisome function. By integration with extant data sets, we present a total of 211 genes linked to peroxisome biogenesis and highlight the complex networks through which information flows during peroxisome biogenesis and function.


Assuntos
Genômica , Peroxissomos/metabolismo , Biologia Computacional , Bases de Dados Factuais , Citometria de Fluxo , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
J Immunol ; 185(2): 818-21, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20562263

RESUMO

Pathogens are detected by pattern recognition receptors that, upon activation, orchestrate an appropriate immune response. The TLRs and the nucleotide-binding oligomerization domain-like receptors (NLRs) are prototypic pattern recognition receptors that detect extracellular and cytosolic pathogens, respectively. Listeria monocytogenes has both extracellular and cytosolic phases and is detected in the cytosol by members of the NLR family. These include two NLR members, NLRC4 and NLRP3, that, upon detection of cytosolic L. monocytogenes, induce the assembly of the inflammasome. Inflammasomes serve as platforms for the activation of the protease caspase 1, which mediates the processing and secretion of pro-IL-1beta and pro-IL-18. We previously provided evidence that L. monocytogenes is also detected by a third inflammasome. We now use biochemical and genetic approaches to demonstrate that the third detector senses bacterial DNA and identify it as Aim2, a receptor that has previously been shown to detect viral DNA.


Assuntos
DNA Bacteriano/imunologia , Listeria monocytogenes/imunologia , Macrófagos/imunologia , Proteínas Nucleares/imunologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Citosol/imunologia , Citosol/microbiologia , Proteínas de Ligação a DNA , Ensaio de Imunoadsorção Enzimática , Interações Hospedeiro-Patógeno , Interleucina-1beta/metabolismo , Células L , Listeria monocytogenes/genética , Listeria monocytogenes/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Nucleares/genética , Fagossomos/imunologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA