Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 17(1): e20418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38093595

RESUMO

Greenbug [Schizaphis graminum (Rondani)] is a major insect pest that significantly affects barley production worldwide. The identification of novel greenbug resistance genes is crucial for sustainable barley production and global food security. To identify greenbug resistance genes from a US breeding line PI 499276 and a Chinese cultivar PI 566459, two F6:7 recombinant inbred line (RIL) populations developed from crosses Weskan × PI 499276 and Weskan × PI 566459 were phenotyped for responses to greenbug biotype E and genotyped using genotyping-by-sequencing (GBS). Linkage analysis using single nucleotide polymorphism and kompetitive allele-specific polymorphism (KASP) markers delimited the greenbug resistance genes from PI 499276 and PI 566459 to a 1.2 Mb genomic region between 666.5 and 667.7 Mb on the long arm of chromosome 3H in the Morex Hordeum vulgare r1 reference sequence. Allelism tests based on responses of four F2 populations to greenbug biotype E indicated that the greenbug resistance gene in PI 499276 and PI 566459 is either allelic or very close to Rsg1. Given that PI 499276 and PI 566459 shared the same unique resistance pattern to a set of 14 greenbug biotypes, which is different from those of other Rsg1 alleles, they carry a new Rsg1 allele. The greenbug resistance genes in Post 90, PI 499276/PI 566459, and WBDC 336 were designated as Rsg1.a1, Rsg1.a2, and Rsg1.a3, respectively. KASP markers KASP-Rsg1a3-1, KASP-Rsg1a3-2, and KASP160 can be used to tag Rsg1.a2 in barley breeding.


Assuntos
Hordeum , Hordeum/genética , Alelos , Melhoramento Vegetal , Fenótipo , Genótipo
2.
Plant Genome ; 16(1): e20287, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36479942

RESUMO

Greenbug (Schizaphis graminum Rondani) is a pest that poses a serious threat to cereal production worldwide. Yield losses caused by greenbug are predicted to increase because of global warming. To date, only a few barley (Hordeum vulgare L.) greenbug resistance genes have been reported and new genes are urgently needed because of the continuous occurrence of novel greenbug biotypes. PI 565676, a landrace collected from Henan province of China, exhibits high resistance to several predominant greenbug biotypes. An F6:7 recombinant inbred line (RIL) population derived from the cross PI 565676 × 'Weskan' was evaluated for response to greenbug biotypes E and F using a standard aphid assay protocol, and a randomized complete block design with two replicates was adopted. The RIL population was genotyped using single-nucleotide polymorphisms (SNPs) markers generated by genotyping-by-sequencing (GBS). Gene mapping placed the greenbug resistance gene in PI 565676, designated Rsg3, to an interval of 93,140 bp between 667,558,306 and 667,651,446 bp on the long arm of chromosome 3H. Four high-confidence genes were annotated in this region with one encoding a leucine-rich repeat-containing protein. An allelism test indicated that Rsg3 is independent of the Rsg1 locus, with estimated recombination frequency of 12.85 ± 0.20% and genetic distance of 13.14 ± 0.21 cM between the two loci. Therefore, Rsg3 represents a new locus for greenbug resistance. Two SNPs flanking Rsg3 were converted to Kompetitive Allele Specific PCR (KASP) markers, which can be used to tag Rsg3 in barley breeding.


Assuntos
Afídeos , Hordeum , Animais , Alelos , Afídeos/genética , Mapeamento Cromossômico , Genótipo , Hordeum/genética , Melhoramento Vegetal
3.
Genomics ; 114(4): 110408, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35716823

RESUMO

Since 2013, the sorghum aphid (SA), Melanaphis sorghi (Theobald), has been a serious pest that hampers all types of sorghum production in the U.S. Known sorghum aphid resistance in sorghum is limited to a few genetic regions on SBI-06. In this study, a subset of the Sorghum Association Panel (SAP) was used along with some additional lines to identify genomic regions that confer sorghum aphid resistance. SAP lines were grown in the field and visually evaluated for SA resistance during the growing seasons of 2019 and 2020 in Tifton, GA. In 2020, the SAP accessions were also evaluated for SA resistance in the field using drone-based high throughput phenotyping (HTP). Flowering time was recorded in the field to confirm that our methods were sufficient for identifying known quantitative trait loci (QTL). This study combined phenotypic data from field-based visual ratings and reflectance data to identify genome-wide associated (GWAS) marker-trait associations (MTA) using genotyping-by-sequencing (GBS) data. Several MTAs were identified for SA-related traits across the genome, with a few common markers that were consistently identified on SBI-08 and SBI-10 for aphid count and plant damage, as well as loci for reflectance-based traits on SBI-02, SBI-03, and SBI-05. Candidate genes encoding leucine-rich repeats (LRR), Avr proteins, lipoxygenases (LOXs), calmodulins (CAM) dependent protein kinase, WRKY transcription factors, flavonoid biosynthesis genes, and 12-oxo-phytodienoic acid reductase were identified near SNPs that had significant associations with different SA traits. In this study, flowering time-related genes were also identified as a positive control for the methods. The total phenotypic variation explained by significant SNPs across SA-scored traits, reflectance data, and flowering time ranged from 6 to 61%, while the heritability value ranged from 4 to 69%. This study identified three new sources of resistant lines to sorghum aphid. These results supported the existing literature, and also revealed several new loci. Markers identified in this study will support marker-assisted breeding for sorghum aphid resistance.


Assuntos
Afídeos , Sorghum , Animais , Afídeos/genética , Grão Comestível/genética , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Sorghum/genética
4.
Sci Adv ; 8(6): eabj4633, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138897

RESUMO

Rapid environmental change can lead to population extinction or evolutionary rescue. The global staple crop sorghum (Sorghum bicolor) has recently been threatened by a global outbreak of an aggressive new biotype of sugarcane aphid (SCA; Melanaphis sacchari). We characterized genomic signatures of adaptation in a Haitian breeding population that had rapidly adapted to SCA infestation, conducting evolutionary population genomics analyses on 296 Haitian lines versus 767 global accessions. Genome scans and geographic analyses suggest that SCA adaptation has been conferred by a globally rare East African allele of RMES1, which spread to breeding programs in Africa, Asia, and the Americas. De novo genome sequencing revealed potential causative variants at RMES1. Markers developed from the RMES1 sweep predicted resistance in eight independent commercial and public breeding programs. These findings demonstrate the value of evolutionary genomics to develop adaptive trait technology and highlight the benefits of global germplasm exchange to facilitate evolutionary rescue.

5.
Planta ; 255(2): 38, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031833

RESUMO

MAIN CONCLUSION: Three known sugarcane aphid-resistant pollinator parents were sterilized in A3 cytoplasmic male sterility and were confirmed in this study to be resistant to sugarcane aphid allowing for the development of sugarcane aphid-resistant forage hybrids. We utilized A3 cytoplasmic male sterility and converted known sugarcane aphid-resistant sorghum TX 2783, and newly released R. LBK1 (Reg. No. GP-865, PI 687244) and R. LBK2 (Reg. No. GP-866, PI 687245) into A3 sterility to determine if the sterile counterparts would also equally express tolerance and or antibiosis to sugarcane aphid. Free-choice flat screen trials and life-table demographic studies were utilized and compared to know susceptible/fertile entries KS 585, and TX 7000, and known resistant/fertile entries TX 2783 and DKS 37-07. The R. LBK1 fertile entry was more tolerant than the known susceptible entries KS 585 and TX 7000, but was not as resistant as the other resistant entries, sustaining a damage rating of 6.0 across two different screen trials. The sterile A3 R. LBK2 showed a greater tolerance and expressed higher levels of antibiosis during aphid reproductive studies when compared to the known resistant and fertile TX 2783. All other fertile (R. LBK2, TX2783) and the A3 male sterile counterparts (A3 R. LBK2, A3 TX2783) were very similar in expression of high levels of tolerance and exhibited statistically similar damage ratings of 3.3-4.3 when exposed to sugarcane aphids. No entry, either fertile or sterile, was as tolerant as DKS 37-07, a known resistant commercial hybrid. Other plant measurements including percent loss in chlorophyll content, difference in plant height, and number of true leaves for sugarcane aphid infested versus non-infested were very consistent and highly correlated with damage ratings. Antibiosis was also exhibited in both fertile and sterile versions of the resistant lines. There was a 2 × reduction in fecundity between the R. LBK1 fertile and its sterile A3 R. LBK1 when compared to the susceptible KS 585 and TX 7000; however, the remaining fertile and sterile entries had 3.8 × to 5.8 × decrease in fecundity when compared to the susceptible KS 585 and TX 7000. Other measurements in life-table statistics such as nymphs produced/female/d, and the intrinsic rates of increased were significantly lower for all fertile and sterile lines, showing that antibiosis significantly affected sugarcane aphid reproduction. In conclusion, the A3 cytoplasmic male sterility shows consistency for maintaining the single dominant trait SCA-resistant trait of TX 2783 for expressing both antibiosis and tolerance, and great utility in the development of sugarcane aphid-resistant forage sorghums.


Assuntos
Afídeos , Infertilidade das Plantas , Sorghum , Animais , Grão Comestível , Sorghum/genética
6.
Planta ; 252(1): 14, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32621008

RESUMO

MAIN CONCLUSION: The findings of this study suggest that known resistant sorghum genotypes compensate for feeding pressure of sugarcane aphid by maintaining/increasing photosynthetic capacity and/or have higher chlorophyll content than susceptible genotypes. Knowledge of the physiological response of sorghum, (Sorghum bicolor (L.) Moench), to sugarcane aphid (SCA), Melanaphis sacchari (Zehnter) feeding will provide baseline information on defense responses and resistance mechanisms. This study documented the impact of SCA feeding on seven sorghum genotypes by measuring chlorophyll content, photosynthetic rate, stomatal conductance, and carbon assimilation for a 14-d post-infestation evaluation. Carbon assimilation (A/Ci) curves were recorded at 3, 6, 9, and 15 d after aphid infestation to describe the pattern of physiological response of resistant and susceptible sorghums over time. Chlorophyll loss from resistant genotypes was significantly lower (≤ 10% loss) than from susceptible cultivars. Most resistant genotypes compensated for aphid feeding by either increasing or maintaining photosynthetic rate and stomatal conductance. Carbon assimilation curves over time showed that infested resistant plants had delayed photosynthetic decreases, whereas susceptible plants rapidly lost photosynthetic capacity. This research also investigated the influence of aphid density (0, 50, 100, and 200 nymphs/plant) on the photosynthetic rates of 28-d-old resistant and susceptible sorghums measured at 72-h post-infestation. Although there were no visual symptoms in susceptible sorghums, photosynthetic rates were impaired when infested with ≥ 100 SCA. In contrast, resistant plants were able to compensate for SCA feeding. Differences in the physiological responses of susceptible versus resistant sorghums indicate that resistant sorghum plants can tolerate some physiological impacts of SCA feeding and maintain photosynthetic integrity.


Assuntos
Afídeos/fisiologia , Sorghum/fisiologia , Animais , Afídeos/patogenicidade , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Genótipo , Fotossíntese , Densidade Demográfica , Sorghum/genética
7.
Theor Appl Genet ; 133(2): 615-622, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31773177

RESUMO

KEY MESSAGE: A new greenbug resistance gene Gb8 conferring broad resistance to US greenbug biotypes was identified in hard red winter wheat line PI 595379-1 and was mapped to the terminal region of chromosome 7DL. Greenbug [Schizaphis graminum (Rondani)] is a worldwide insect pest that poses a serious threat to wheat production. New greenbug resistance genes that can be readily used in wheat breeding are urgently needed. The objective of this study was to characterize a greenbug resistance gene in PI 595379-1, a single plant selection from PI 595379. Genetic analysis of response to greenbug biotype E in an F2:3 population derived from a cross between PI 595379-1 and PI 243735 indicated that a single gene, designated Gb8, conditioned resistance. Linkage analysis placed Gb8 in a 2.7-Mb interval in the terminal bin of chromosome 7DL (7DL3-082-1.0), spanning 595.6 to 598.3 Mb in the Chinese Spring IWGSC RefSeq version 1.0 reference sequence. Gb8 co-segregated with a newly developed SSR marker Xstars508, positioned at 596.4 Mb in the reference sequence. Allelism tests showed that Gb8 was different from three permanently named genes on the same chromosome arm and the estimated genetic distance between Gb8 and Gb3 was 15.35 ± 1.35 cM. Gb8 can be directly used in wheat breeding to enhance greenbug resistance.


Assuntos
Afídeos/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Alelos , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Resistência à Doença/fisiologia , Ligação Genética , Melhoramento Vegetal , Doenças das Plantas/parasitologia , Triticum/metabolismo
8.
PLoS One ; 14(1): e0209850, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629630

RESUMO

PROBLEM: Do conservative econometric models that comply with the Golden Rule of Forecasting provide more accurate forecasts? METHODS: To test the effects of forecast accuracy, we applied three evidence-based guidelines to 19 published regression models used for forecasting 154 elections in Australia, Canada, Italy, Japan, Netherlands, Portugal, Spain, Turkey, U.K., and the U.S. The guidelines direct forecasters using causal models to be conservative to account for uncertainty by (I) modifying effect estimates to reflect uncertainty either by damping coefficients towards no effect or equalizing coefficients, (II) combining forecasts from diverse models, and (III) incorporating more knowledge by including more variables with known important effects. FINDINGS: Modifying the econometric models to make them more conservative reduced forecast errors compared to forecasts from the original models: (I) Damping coefficients by 10% reduced error by 2% on average, although further damping generally harmed accuracy; modifying coefficients by equalizing coefficients consistently reduced errors with average error reductions between 2% and 8% depending on the level of equalizing. Averaging the original regression model forecast with an equal-weights model forecast reduced error by 7%. (II) Combining forecasts from two Australian models and from eight U.S. models reduced error by 14% and 36%, respectively. (III) Using more knowledge by including all six unique variables from the Australian models and all 24 unique variables from the U.S. models in equal-weight "knowledge models" reduced error by 10% and 43%, respectively. ORIGINALITY: This paper provides the first test of applying guidelines for conservative forecasting to established election forecasting models. USEFULNESS: Election forecasters can substantially improve the accuracy of forecasts from econometric models by following simple guidelines for conservative forecasting. Decision-makers can make better decisions when they are provided with models that are more realistic and forecasts that are more accurate.


Assuntos
Previsões/métodos , Política , Austrália , Canadá , Tomada de Decisões , Europa (Continente) , Humanos , Japão , Modelos Econométricos , Modelos Teóricos , Turquia , Reino Unido
9.
PLoS One ; 13(4): e0196124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29694435

RESUMO

In the United States (US), the sugarcane aphid (SCA) Melanaphis sacchari (Zehnter) (Hemiptera: Aphididae) was introduced in the 1970s, however at that time it was only considered a pest of sugarcane. In 2013, a massive outbreak of M. sacchari occured on sorghum, resulting in significant economic damage to sorghum grown in North America including the US, Mexico, and Puerto Rico. The aim of the present study was to determine if the SCA pest emergence in American sorghum resulted from the introduction of new genotypes. To this end we used microsatellite markers and COI sequencing to compare the genetic diversity of SCA populations collected in the Americas after the 2013 SCA outbreak on sorghum (during 2013-2017) to older samples collected before the pest outbreak (during 2007-2009). Our results show that the SCA outbreak in the Americas and the Caribbean observed since 2013 belong to populations exhibiting low genetic diversity and consisting of a dominant clonal lineage, MLL-F, which colonizes Sorghum spp. and sugarcane. The comparison of MLL-F specimens collected post-2013 with specimens collected in Louisiana in 2007 revealed that both populations are genetically distinct, according to COI sequencing and microsatellite data analyses. Our result suggest that MLL-F is a new invasive genotype introduced into the Americas that has spread rapidly across sorghum growing regions in the US, Mexico, Honduras and the Caribbean. The origin of this introduction is either Africa or Asia, with Asia being the most probable source.


Assuntos
Afídeos/genética , Repetições de Microssatélites , Análise de Sequência de DNA/métodos , Sorghum/parasitologia , Animais , Afídeos/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Genótipo , Proteínas de Insetos/genética , Espécies Introduzidas , América do Norte
10.
J Econ Entomol ; 110(1): 259-265, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011682

RESUMO

The sugarcane aphid, Melanaphis sacchari (Zehntner), has established itself as a perennial pest of grain and forage sorghums in the United States since the summer of 2013. We conducted traditional plant resistance studies that determine tolerance, antibiosis, and antixenosis in 32 sorghum genotypes when challenged with sugarcane aphids. The genotypes included one exotic plant introduction and 31 seed and pollinator parental lines that are used to produce grain, sudangrass, and forage sorghum hybrids. One seed parent (B11055) and one grain pollinator parent (R13219) expressed significant degrees of tolerance, antibiosis, and antixenosis and were top performers in all three resistance type experiments. An additional group of seed parents (B13045 and B1057) and grain pollinator parents (R11159, R13422, and RTx2908) and the plant introduction (PI 550610) resulted in an intermediate range of phenotypic resistance (i.e., 4.0 < 6.0) indicative of antibiosis from reduced fecundity, increased intrinsic rate of increase, and increased generation times. The forms of resistance expressed in these lines, especially B11055 and R13219, have great potential in breeding programs that can be integrated into useable forms of resistant sorghums.


Assuntos
Antibiose , Afídeos/fisiologia , Herbivoria , Sorghum/fisiologia , Animais , Sorghum/genética , Sorghum/crescimento & desenvolvimento , Texas
11.
J Econ Entomol ; 109(1): 434-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26527793

RESUMO

The genetic sources for host-plant resistance to the greenbug (Schizaphis graminum Rondani) in barley (Hordeum vulgare ssp. spontaneum) are limited in that only two single dominant genes Rsg1 and Rsg2 are available for the complex of greenbug biotypes. We evaluated four new barley lines from the Wild Barley Diversity Collection (WBDC) that previously showed potential for greenbug resistance. Three of those entries, WBDC 53, WBDC 117, WBDC 336, exhibited very dominant sources of resistance to older known biotypes B, C, E, F, H, I, and TX1, which also add to the host-plant differentials used to separate these greenbug biotypes. We also re-evaluated the earlier known set of greenbug biotypes that have been in culture for several years against the known host-plant differentials, and included seven newer greenbug isolates collected from Wyoming to the full complement of small grain differentials. This resulted in the discovery of five new greenbug biotypes, WY10 MC, WY81, WY10 B, WY12 MC, and WY86. Wyoming isolates WY4 A and WY4 B were identical in their phenotypic profile, and should be combined as a single unique greenbug biotype. These barley trials resulted in finding new sources of host-plant resistance, although more research needs to be conducted on what type of resistance was found, and how it can be used. We also document that the Wheatland, Wyoming area serves as a very conducive environment for the development of new greenbug biotypes.


Assuntos
Antibiose , Afídeos/genética , Hordeum/genética , Animais , Afídeos/fisiologia , Comportamento Alimentar , Hordeum/crescimento & desenvolvimento
12.
J Econ Entomol ; 108(2): 576-82, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26470168

RESUMO

The graminous host range and sources of sorghum [Sorghum bicolor (L.) Moench.] plant resistance, including cross-resistance from greenbug, Schizaphis graminum (Rondani), were studied for the newly emerging sugarcane aphid, Melanaphis sacchari (Zehntner), in greenhouse no-choice experiments and field evaluations. The sugarcane aphid could not survive on field corn, Zea mays (L.), Teff grass, Eragrostis tef (Zucc.), proso millet, Panicum miliaceum L., barley, Hordeum vulgare L., and rye, Secale cereale L. Only sorghum genotypes served as hosts including Johnsongrass, Sorghum halepense (L.), a highly suitable noncrop host that generates high numbers of sugarcane aphid and maintains moderate phenotypic injury. The greenbug-resistant parental line RTx2783 that is resistant to greenbug biotypes C and E was resistant to sugarcane aphid in both greenhouse and field tests, while PI 55607 greenbug resistant to biotypes B, C, and E was highly susceptible. PI 55610 that is greenbug resistant to biotypes B, C, and E maintained moderate resistance to the sugarcane aphid, while greenbug-resistant PI 264453 was highly susceptible to sugarcane aphid. Two lines and two hybrids from the Texas A&M breeding program B11070, B11070, AB11055-WF1-CS1/RTx436, and AB11055-WF1-CS1/RTx437 were highly resistant to sugarcane aphid, as were parental types SC110, SC170, and South African lines Ent62/SADC, (Macia/TAM428)-LL9, (SV1*Sima/IS23250)-LG15. Tam428, a parental line that previously showed moderate resistance in South Africa and India, also showed moderate resistance in these evaluations. Overall, 9 of 20 parental sorghum entries tested for phenotypic damage in the field resulted in good resistance to the sugarcane aphid and should be utilized in breeding programs that develop agronomically acceptable sorghums for the southern regions of the United States.


Assuntos
Afídeos , Sorghum/imunologia , Animais , Especificidade de Hospedeiro , Fenótipo
13.
J Econ Entomol ; 106(5): 2077-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24224249

RESUMO

Verde plant bugs, Creontiades signatus Distant (Hemiptera: Miridae), were released onto caged cotton, Cossypium hirsutum L., for a 1-wk period to characterize the effects of insect density and bloom period of infestation on cotton injury and yield in 2011 and 2012, Corpus Christi, TX. When plants were infested during early bloom (10-11 nodes above first white flower), a linear decline in fruit retention and boll load and a linear increase in boll injury were detected as verde plant bug infestation levels increased from an average of 0.5 to 4 bugs per plant. Lint and seed yield per plant showed a corresponding decline. Fruit retention, boll load, and yield were not affected on plants infested 1 wk later at peak bloom (8-9 nodes above first white flower), even though boll injury increased as infestation levels increased. Second-year testing verified boll injury but not yield loss, when infestations occurred at peak bloom. Incidence of cotton boll rot, known to be associated with verde plant bug feeding, was low to modest (< 1% [2012] to 12% [2011] of bolls with disease symptoms), and drought stress persisted throughout the study. Caging effect was minimal: a 10% fruit retention decline was associated with caging, and the effect was not detectable in the other measurements. Overall, reduced fruit retention and boll load caused by verde plant bug were important contributors to yield decline, damage potential was greatest during the early bloom period of infestation, and a simple linear response best described the yield response-insect density relationship at early bloom. Confirmation that cotton after peak bloom was less prone to verde plant bug injury and an early bloom-specific economic injury level were key findings that can improve integrated pest management decision-making for dryland cotton, at least under low-rainfall growing conditions.


Assuntos
Agricultura/métodos , Cadeia Alimentar , Gossypium/crescimento & desenvolvimento , Heterópteros/fisiologia , Agricultura/economia , Animais , Densidade Demográfica , Distribuição Aleatória , Estações do Ano , Texas
14.
J Econ Entomol ; 106(3): 1310-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23865196

RESUMO

The ability to monitor verde plant bug, Creontiades signatus Distant (Hemiptera: Miridae), and the progression of cotton, Gossypium hirsutum L., boll responses to feeding and associated cotton boll rot provided opportunity to assess if single in-season measurements had value in evaluating at-harvest damage to bolls and if multiple in-season measurements enhanced their combined use. One in-season verde plant bug density measurement, three in-season plant injury measurements, and two at-harvest damage measurements were taken in 15 cotton fields in South Texas, 2010. Linear regression selected two measurements as potentially useful indicators of at-harvest damage: verde plant bug density (adjusted r2 = 0.68; P = 0.0004) and internal boll injury of the carpel wall (adjusted r2 = 0.72; P = 0.004). Considering use of multiple measurements, a stepwise multiple regression of the four in-season measurements selected a univariate model (verde plant bug density) using a 0.15 selection criterion (adjusted r2 = 0.74; P = 0.0002) and a bivariate model (verde plant bug density-internal boll injury) using a 0.25 selection criterion (adjusted r2 = 0.76; P = 0.0007) as indicators of at-harvest damage. In a validation using cultivar and water regime treatments experiencing low verde plant bug pressure in 2011 and 2012, the bivariate model performed better than models using verde plant bug density or internal boll injury separately. Overall, verde plant bug damaging cotton bolls exemplified the benefits of using multiple in-season measurements in pest monitoring programs, under the challenging situation when at-harvest damage results from a sequence of plant responses initiated by in-season insect feeding.


Assuntos
Gossypium/crescimento & desenvolvimento , Heterópteros/fisiologia , Controle de Insetos/métodos , Animais , Gossypium/microbiologia , Herbivoria , Ninfa/fisiologia , Doenças das Plantas/microbiologia , Densidade Demográfica , Análise de Regressão , Texas
15.
J Econ Entomol ; 106(1): 189-95, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23448031

RESUMO

The verde plant bug, Creontiades signatus (Distant), has been present in south Texas for several years but has more recently been documented as an economic threat to cultivated cotton, (Gossypium hirsutum L. Our studies over 2 yr (2009 and 2010) and two locations (Weslaco and Corpus Christi, TX) investigated feeding-injury of the verde plant bug to a range of cotton boll age classes defined by boll diameter and accumulated degree-days (anthesis to the time of infesting) for first-position cotton bolls infested with the plant bugs. The most detrimental damage to younger cotton holls from verde plant bug feeding was boll abscission. Cotton bolls <04 accumulating daily degree-days (ACDD), or a boll diameter of 1.3 cm were subject to 60-70% higher boll abscission when compared with the noninfested controls. Significantly higher boll abscission occurred from verde plant bug injured bolls compared with the controls up to 162 ACDD or a mean boll diameter 2.0 cm. Cotton seed weights were significantly reduced up to 179 ACDD or a boll diameter of 2.0 cm at Weslaco in 2009, and up to 317 ACDD or boll diameter 2.6 cm for Weslaco in 2010 when compared with the noninfested controls. Lint weight per cotton boll for infested and noninfested bolls was significantly reduced up to 262 ACDD or boll diameter 2.5 for Corpus Christi in 2010 and up to 288 ACCD or boll diameter 2.6 cm for Weslaco, TX, in 2010. Damage ratings (dependant variable) regressed against infested and noninfested seed-cotton weights showed that in every instance, the infested cotton bolls had a strong and significant relationship with damage ratings for all age classes of bolls. Damage ratings for the infested cotton bolls that did not abscise by harvest showed visual signs of verde plant bug feeding injury and the subsequent development ofboll rot; however, these two forms of injury causing lint and seed mass loss are hard to differentiate from open or boll-locked cotton bolls. Based on the results of both lint and seed loss over 2 yr and four studies cotton bolls should be protected up to approximately 300 ACDD or a boll diameter of 2.5 cm. This equilibrates to bolls that are 12-14 d of age dependent upon daily maximum and minimum temperatures.


Assuntos
Gossypium/crescimento & desenvolvimento , Hemípteros/fisiologia , Herbivoria , Animais , Frutas/crescimento & desenvolvimento
16.
J Econ Entomol ; 105(3): 896-905, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22812128

RESUMO

Sampling methods for square and boll-feeding plant bugs (Hemiptera: Miridae) occurring on cotton, Gossypium hirsutum L., were compared with the intent to assess if one approach was viable for two species occurring from early-season squaring to late bloom in 25 fields located along the coastal cotton growing region of south Texas. Cotton fleaphopper, Pseudatomoscelis seriatus (Reuter), damages squares early-season and dominated collections using five sampling methods (approximately 99% of insects collected). A major species composition shift occurred beginning at peak bloom in coastal fields, when verde plant bug, Creontiades signatus Distant, represented 55-65% of collections. Significantly more cotton fleahoppers were captured by experienced samplers with the beat bucket and sweep net than with the other methods (30-100% more). There were more than twice as many verde plant bugs captured by experienced and inexperienced samplers with the beat bucket and sweep net than captured with the KISS and visual methods. Using a beat bucket or sweep net reduced sampling time compared with the visual method for the experienced samplers. For both species, comparing regressions of beat bucket-based counts to counts from the traditional visual method across nine cultivar and water regime combinations resulted in only one combination differing from the rest, suggesting broad applicability and ability to translate established visual-based economic thresholds to beat bucket-based thresholds. In a first look at sample size considerations, 40 plants (four 10-plant samples) per field site was no more variable than variation associated with larger sample sizes. Overall, the beat bucket is much more effective in sampling for cotton fleahopper and verde plant bug than the traditional visual method, it is more suited to cotton fleahopper sampling early-season when plants are small, it transitions well to sample for verde plant bug during bloom, and it performs well under a variety of soil moisture conditions and cultivar selections.


Assuntos
Gossypium/parasitologia , Hemípteros , Controle de Insetos , Animais , Gossypium/crescimento & desenvolvimento , Controle de Insetos/economia , Ninfa , Tamanho da Amostra
17.
J Econ Entomol ; 103(2): 302-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20429442

RESUMO

The sunflower stem weevil, Cylindrocopturus adspersus (LeConte) (Coleoptera: Curculionidae), has caused yield losses across much of the western Great Plains. Little is known about the field biology of this pest. Simple prediction models, such as degree-day models, are an integral tool for development of C. adspersus management strategies. Using data collected in Colorado, Kansas, and Nebraska, we sought for predictable variation between C. adspersus pupation, adult eclosion, and emergence and accumulated degree-days Celsius (DD) by using a temperature threshold of 5 degrees C. Accurate phenological models can be used to time scouting efforts and pesticide applications. The relationship between phenological data and accumulated DD fit nonlinear, Gaussian distributions better than uniform distributions. Phenological models were developed to describe these distributions for pupation, adult presence within the stalk and adult emergence. The pupation model predicts 50% pupation at 197 DD and 90% at 307 DD. Model results predict that 50% of adult eclosion within the stalks will have transpired at 396 DD and 90% at 529 DD. A model-averaged result from two data sets predicts 5% adult emergence from stalks at 262 DD, 50% emergence at 540 DD, 75% emergence at 657 DD, and 90% at 777 DD. Scouting for adults thus can be initiated at 262 DD. Current chemical controls target adults to prevent oviposition. Thus, applications therefore should not be made before this point.


Assuntos
Besouros/fisiologia , Temperatura , Animais , Modelos Logísticos , Estações do Ano
18.
J Econ Entomol ; 101(2): 399-403, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18459404

RESUMO

Boll weevil traps baited with a ComboLure (25 of mg grandlure + 30 mg of eugenol + 90 of mg dichlorvos [DDVP]), an extended-release lure (25 mg of grandlure + 30 mg of eugenol + 60 of mg DDVP kill-strip), and extended-release lure with no DDVP were evaluated for boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), captures in South Texas cotton, Gossypium hirsutum L., fields during February-March 2005 and March-April 2006. The traps were serviced once a week for five consecutive weeks by using the same methodology as active boll weevil eradication programs. Mean captured boll weevils from extended-release lures with no DDVP were significantly higher in five of 10 trapping weeks compared with captures of the ComboLure and extended lure. Weekly mortality of boll weevils captured was similar for the ComboLure (72.6 +/- 4.7%) and extended lure + DDVP (73.5 +/- 4.0%), and both were significantly higher than the extended lure (32.8 +/- 5.0%) with no DDVP. The presence or absence of DDVP did not significantly affect the sex ratio of field-captured boll weevils. We found no functional reasoning for using DDVP in large scale trapping of boll weevils regardless of the formulation or presentation in the trap. We conducted two additional trapping evaluations after the 2005 and 2006 studies, but the numbers of boll weevils captured were too low for statistical comparisons, indicating that boll weevil eradication is reducing populations in the Rio Grande Valley of Texas.


Assuntos
Besouros/efeitos dos fármacos , Diclorvós/farmacologia , Controle de Insetos/métodos , Inseticidas/farmacologia , Feromônios/farmacologia , Animais , Cicloparafinas/farmacologia , Eugenol/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...