Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet B Neuropsychiatr Genet ; 192(7-8): 171-182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334860

RESUMO

Fibromyalgia is a complex disease of unclear etiology that is complicated by difficulties in diagnosis, treatment, and clinical heterogeneity. To clarify this etiology, healthcare-based data are leveraged to assess the influences on fibromyalgia in several domains. Prevalence is less than 1% of females in our population register data, and about 1/10th that in males. Fibromyalgia often presents with co-occurring conditions including back pain, rheumatoid arthritis, and anxiety. More comorbidities are identified with hospital-associated biobank data, falling into three broad categories of pain-related, autoimmune, and psychiatric disorders. Selecting representative phenotypes with published genome-wide association results for polygenic scoring, we confirm genetic predispositions to psychiatric, pain sensitivity, and autoimmune conditions show associations with fibromyalgia, although these may differ by ancestry group. We conduct a genome-wide association analysis of fibromyalgia in biobank samples, which did not result in any genome-wide significant loci; further studies with increased sample size are necessary to identify specific genetic effects on fibromyalgia. Overall, fibromyalgia appears to have strong clinical and likely genetic links to several disease categories, and could usefully be understood as a composite manifestation of these etiological sources.


Assuntos
Artrite Reumatoide , Fibromialgia , Masculino , Feminino , Humanos , Fibromialgia/genética , Fibromialgia/diagnóstico , Fibromialgia/epidemiologia , Estudo de Associação Genômica Ampla , Dor/genética , Dor/complicações , Dor/diagnóstico , Comorbidade , Artrite Reumatoide/complicações , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/epidemiologia
2.
J Neurosci ; 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803734

RESUMO

DYRK1A triplication in Down's Syndrome (DS) and its overexpression in Alzheimer's Disease (AD) suggest a role for increased DYR1A activity in the abnormal metabolism of APP. Transport defects are early phenotypes in the progression of AD, which lead to APP processing impairments. However, whether DYRK1A regulates the intracellular transport and delivery of APP in human neurons remains unknown. From a proteomic dataset of human cerebral organoids treated with harmine, a DYRK1A inhibitor, we found expression changes in protein clusters associated with the control of microtubule-based transport and in close interaction with the APP vesicle. Live-imaging of APP axonal transport in human-derived neurons treated with harmine or overexpressing a dominant negative DYRK1A revealed a reduction in APP vesicle density and enhanced the stochastic behavior of retrograde vesicle transport. Moreover, harmine increased the fraction of slow segmental velocities and changed speed transitions supporting a DYRK1A-mediated effect in the exchange of active motor configuration. Contrarily, the overexpression of DYRK1A in human polarized neurons increased the axonal density of APP vesicles and enhanced the processivity of retrograde APP. In addition, increased DYRK1A activity induced faster retrograde segmental velocities together with significant changes in slow to fast anterograde and retrograde speeds transitions suggesting the facilitation of the active motor configuration. Our results highlight DYRK1A as a modulator of the axonal transport machinery driving APP intracellular distribution in neurons, and stress DYRK1A inhibition as a putative therapeutic intervention to restore APP axonal transport in DS and AD.Significance StatementAxonal transport defects are early events in the progression of neurodegenerative diseases such as Alzheimer's Disease (AD). However, the molecular mechanisms underlying transport defects remain elusive. DYRK1A kinase is triplicated in Down's Syndrome and overexpressed in AD, suggesting that DYRK1A dysfunction affects molecular pathways leading to early-onset neurodegeneration. Here, we show by live imaging of human-derived neurons that DYRK1A activity differentially regulates the intracellular trafficking of the amyloid precursor protein (APP). Further, single particle analysis revealed DYRK1A as a modulator of axonal transport and the configuration of active motors within the APP vesicle. Our work highlights DYRK1A as a regulator of APP axonal transport and metabolism; supporting DYRK1A inhibition as a therapeutic strategy to restore intracellular dynamics in AD.

3.
J Biol Chem ; 294(6): 1794-1806, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30530492

RESUMO

Lipid transport is an essential process with manifest importance to human health and disease. Phospholipid flippases (P4-ATPases) transport lipids across the membrane bilayer and are involved in signal transduction, cell division, and vesicular transport. Mutations in flippase genes cause or contribute to a host of diseases, such as cholestasis, neurological deficits, immunological dysfunction, and metabolic disorders. Genome-wide association studies have shown that ATP10A and ATP10D variants are associated with an increased risk of diabetes, obesity, myocardial infarction, and atherosclerosis. Moreover, ATP10D SNPs are associated with elevated levels of glucosylceramide (GlcCer) in plasma from diverse European populations. Although sphingolipids strongly contribute to metabolic disease, little is known about how GlcCer is transported across cell membranes. Here, we identify a conserved clade of P4-ATPases from Saccharomyces cerevisiae (Dnf1, Dnf2), Schizosaccharomyces pombe (Dnf2), and Homo sapiens (ATP10A, ATP10D) that transport GlcCer bearing an sn2 acyl-linked fluorescent tag. Further, we establish structural determinants necessary for recognition of this sphingolipid substrate. Using enzyme chimeras and site-directed mutagenesis, we observed that residues in transmembrane (TM) segments 1, 4, and 6 contribute to GlcCer selection, with a conserved glutamine in the center of TM4 playing an essential role. Our molecular observations help refine models for substrate translocation by P4-ATPases, clarify the relationship between these flippases and human disease, and have fundamental implications for membrane organization and sphingolipid homeostasis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/química , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Transporte Biológico Ativo , Glucosilceramidas/química , Glucosilceramidas/metabolismo , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese Sítio-Dirigida , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA