Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 223: 109317, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334761

RESUMO

The locus coeruleus (LC)-norepinephrine system is a stress responsive system that regulates arousal and cognitive functions through extensive projections, including to the prefrontal cortex. LC-cortical circuits are activated by stressors, and this activation is thought to contribute to stress-induced impairments in executive function. Because corticotropin-releasing factor (CRF) is a mediator of stress-induced LC activation, we examined the effects of CRF administered into the LC of male and female rats on network activity of two functionally distinct regions of the PFC, the medial PFC (mPFC) and the orbitofrontal cortex (OFC). Network activity, measured as local field potentials, was recorded in awake animals before and after intra-LC infusion of aCSF or CRF (2 or 20 ng). CRF had qualitatively distinct effects on network activity in males and females with respect to dose, region and timecourse. CRF (20 ng) produced a prominent theta oscillation (7-9 Hz) selectively in female rats shortly after LC infusion and 20 min later. In contrast, in male rats, CRF (2 and 20 ng) decreased the amplitude of power in the 4-6 Hz range in the mPFC 10 min after injection. Lastly, CRF (20 ng) increased mPFC-OFC coherence in females and decreased mPFC-OFC coherence in males. In sum, these results show sex differences in CRF modulation of the LC-norepinephrine system that regulates prefrontal cortical networks, which may underlie sex differences in cognitive and behavioral responses to stress.


Assuntos
Hormônio Liberador da Corticotropina , Locus Cerúleo , Feminino , Masculino , Ratos , Animais , Hormônio Liberador da Corticotropina/metabolismo , Norepinefrina/farmacologia , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Córtex Pré-Frontal
2.
Biol Sex Differ ; 13(1): 51, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36163074

RESUMO

BACKGROUND: Habituation to repeated stress refers to a progressive reduction in the stress response following multiple exposures to the same, predictable stressor. We previously demonstrated that the posterior division of the paraventricular thalamic nucleus (pPVT) nucleus regulates habituation to 5 days of repeated restraint stress in male rats. Compared to males, female rats display impaired habituation to 5 days of restraint. To better understand how activity of pPVT neurons is differentially impacted in stressed males and females, we examined the electrophysiological properties of pPVT neurons under baseline conditions or following restraint. METHODS: Adult male and female rats were exposed to no stress (handling only), a single period of 30 min restraint or 5 daily exposures to 30 min restraint. 24 h later, pPVT tissue was prepared for recordings. RESULTS: We report here that spontaneous excitatory post-synaptic current (sEPSC) amplitude was increased in males, but not females, following restraint. Furthermore, resting membrane potential of pPVT neurons was more depolarized in males. This may be partially due to reduced potassium leakage in restrained males as input resistance was increased in male, but not female, rats 24 h following 1 or 5 days of 30-min restraint. Reduced potassium efflux during action potential firing also occurred in males following a single restraint as action potential half-width was increased following a single restraint. Restraint had limited effects on electrophysiological properties in females, although the mRNA for 10 voltage-gated ion channel subunits was altered in the pPVT of female rats. CONCLUSIONS: The results suggest that restraint-induced changes in pPVT activation promote habituation in males. These findings are the first to describe a sexual dimorphism in stress-induced electrophysiological properties and voltage-gated ion channel expression in the pPVT. These results may explain, at least in part, why habituation to 5 days of restraint is disrupted in female rats.


Assuntos
Núcleos da Linha Média do Tálamo , Animais , Feminino , Canais Iônicos/metabolismo , Canais Iônicos/farmacologia , Masculino , Núcleos da Linha Média do Tálamo/fisiologia , Potássio/metabolismo , Potássio/farmacologia , RNA Mensageiro/metabolismo , Ratos , Caracteres Sexuais
3.
Biol Psychiatry ; 92(2): 116-126, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35527070

RESUMO

BACKGROUND: Habituation is defined as a progressive decline in response to repeated exposure to a familiar and predictable stimulus and is highly conserved across species. Disrupted habituation is a signature of posttraumatic stress disorder. In rodents, habituation is observed in neural, neuroendocrine, and behavioral responses to repeated exposure to predictable and moderately intense stress or restraint. We previously demonstrated that lesioning the posterior paraventricular thalamic nucleus (pPVT) impairs habituation. However, the underlying molecular mechanisms and specific neural connections among the pPVT and other brain regions that underlie habituation are unknown. METHODS: Behavioral and neuroendocrine habituation was assessed in adult male Sprague Dawley rats using the repeated restraint paradigm. Pan-neuronal and Cre-dependent DREADDs (designer receptors exclusively activated by designer drugs) were used to chemogenetically inhibit the pPVT and the subpopulation of pPVT neurons that project to the medial prefrontal cortex (mPFC), respectively. Activity-regulated cytoskeleton-associated protein (Arc) expression was knocked down in the pPVT using small interfering RNA. Structural plasticity of pPVT neurons was assessed using Golgi staining. Local field potential recordings were used to assess coherent neural activity between the pPVT and mPFC. The attentional set shifting task was used to assess mPFC-dependent behavior. RESULTS: Here, we show that Arc promotes habituation by increasing stress-induced spinogenesis in the pPVT, increasing coherent neural activity with the mPFC, and improving mPFC-mediated cognitive flexibility. CONCLUSIONS: Our results demonstrate that Arc induction in the pPVT regulates habituation and mPFC function. Therapies that improve synaptic plasticity during posttraumatic stress disorder therapy may enhance habituation and the efficacy of posttraumatic stress disorder treatment.


Assuntos
Núcleos da Linha Média do Tálamo , Sistema Hipófise-Suprarrenal , Animais , Habituação Psicofisiológica/fisiologia , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Estresse Psicológico
4.
Nat Commun ; 10(1): 3146, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316053

RESUMO

Stress can promote the development of psychiatric disorders, though some individuals are more vulnerable to stress compared to others who are more resilient. Here we show that the sphingosine-1-phosphate receptor 3 (S1PR3) in the medial prefrontal cortex (mPFC) of rats regulates resilience to chronic social defeat stress. S1PR3 expression is elevated in the mPFC of resilient compared to vulnerable and control rats. Virally-mediated over-expression of S1PR3 in the mPFC produces a resilient phenotype whereas its knock-down produces a vulnerable phenotype, characterized by increased anxiety- and depressive-like behaviors, and these effects are mediated by TNFα. Furthermore, we show that S1PR3 mRNA in blood is reduced in veterans with PTSD compared to combat-exposed control subjects and its expression negatively correlates with symptom severity. Together, these data identify S1PR3 as a regulator of stress resilience and reveal sphingolipid receptors as important substrates of relevance to stress-related psychiatric disorders.


Assuntos
Córtex Pré-Frontal/metabolismo , Receptores de Esfingosina-1-Fosfato/fisiologia , Estresse Fisiológico , Animais , Técnicas de Silenciamento de Genes , Humanos , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Esfingosina-1-Fosfato/sangue , Receptores de Esfingosina-1-Fosfato/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Veteranos
5.
Neuropsychopharmacology ; 41(5): 1376-85, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26361057

RESUMO

Early life stress is associated with the development of psychiatric disorders. Because the locus coeruleus-norepinephrine (LC-NE) system is a major stress-response system that is implicated in psychopathology, developmental differences in the response of this system to stress may contribute to increased vulnerability. Here LC single unit and network activity were compared between adult and adolescent rats during resident-intruder stress. In some rats, LC and medial prefrontal cortex (mPFC) coherence was quantified. The initial stress tonically activated LC neurons and induced theta oscillations, while simultaneously decreasing LC auditory-evoked responses in both age groups. Stress increased LC-mPFC coherence within the theta range. With repeated exposures, adolescent LC neuronal and network activity remained elevated even in the absence of the stressor and were unresponsive to stressor presentation. In contrast, LC neurons of adult rats exposed to repeated social stress were relatively inhibited in the absence of the stressor and mounted robust responses upon stressor presentation. LC sensory-evoked responses were selectively blunted in adolescent rats exposed to repeated social stress. Finally, repeated stress decreased LC-mPFC coherence in the high frequency range (beta and gamma) while maintaining strong coherence in the theta range, selectively in adolescents. Together, these results suggest that adaptive mechanisms that promote stress recovery and maintain basal activity of the brain norepinephrine system in the absence of stress are not fully developed or are vulnerable stress-induced impairments in adolescence. The resulting sustained activation of the LC-NE system after repeated social stress may adversely impact cognition and future social behavior of adolescents.


Assuntos
Locus Cerúleo/fisiopatologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiopatologia , Estresse Psicológico/fisiopatologia , Estimulação Acústica , Potenciais de Ação , Animais , Ondas Encefálicas , Potenciais Evocados Auditivos , Masculino , Vias Neurais/fisiopatologia , Ratos , Ratos Sprague-Dawley , Comportamento Social
6.
Neuropsychopharmacology ; 40(2): 513-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25109891

RESUMO

Stress is implicated in psychopathology characterized by cognitive dysfunction. Cognitive responses to stress are regulated by the locus coeruleus-norepinephrine (LC-NE) system. As social stress is a prevalent human stressor, this study determined the impact of repeated social stress on the relationship between LC neuronal activity and behavior during the performance of cognitive tasks. Social stress-exposed rats performed better at intradimensional set shifting (IDS) and made fewer perseverative errors during reversal learning (REV). LC neurons of control rats were task responsive, being activated after the choice and before reward. Social stress shifted LC neuronal activity from being task responsive to being reward responsive during IDS and REV. LC neurons of stressed rats were activated by reward and tonically inhibited by reward omission with incorrect choices. In contrast, LC neurons of stress-naive rats were only tonically inhibited by reward omission. Reward-related LC activation in stressed rats was unrelated to predictability because it did not habituate as learning progressed. The findings suggest that social stress history increases reward salience and impairs processes that compute predictability for LC neurons. These effects of social stress on LC neuronal activity could facilitate learning as indicated by improved performance in stressed rats. However, the ability of social stress history to enhance responses to behavioral outcomes may have a role in the association between stress and addictive behaviors. In addition, magnified fluctuations in LC activity in response to opposing behavioral consequences may underlie volatile changes in emotional arousal that characterize post-traumatic stress disorder.


Assuntos
Comportamento de Escolha/fisiologia , Locus Cerúleo/fisiopatologia , Neurônios/fisiologia , Recompensa , Comportamento Social , Estresse Psicológico/fisiopatologia , Animais , Atenção/fisiologia , Eletrodos Implantados , Função Executiva/fisiologia , Masculino , Testes Neuropsicológicos , Distribuição Aleatória , Ratos Long-Evans , Ratos Sprague-Dawley , Reversão de Aprendizagem/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...