Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Cells ; 13(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38607061

RESUMO

The lacrimal gland is crucial for maintaining ocular health by producing the aqueous component of the tear film, which hydrates and nourishes the ocular surface. Decreased production of this component results in dry eye disease, a condition affecting over 250 million people worldwide. However, the scarcity of primary human material for studying its underlying mechanisms and the absence of a cell model for human lacrimal gland epithelial cells present significant challenges. Here, we describe the generation of immortalized human lacrimal gland cell lines through the introduction of an SV40 antigen. We successfully isolated and characterized three cell clones from a female lacrimal gland donor, confirming their epithelial identity through genomic and protein analyses, including PCR, RNAseq, immunofluorescence and cultivation in a 3D spheroid model. Our findings represent a significant advancement, providing improved accessibility to investigate the molecular pathogenesis mechanisms of dry eye disease and potential therapeutic interventions. We identified the expression of typical epithelial cell marker genes and demonstrated the cells' capability to form 2D cell sheets and 3D spheroids. This establishment of immortalized human lacrimal gland cells with epithelial characteristics holds promise for future comprehensive studies, contributing to a deeper understanding of dry eye disease and its cellular mechanisms.


Assuntos
Síndromes do Olho Seco , Aparelho Lacrimal , Humanos , Feminino , Aparelho Lacrimal/metabolismo , Lágrimas/metabolismo , Síndromes do Olho Seco/metabolismo , Linhagem Celular
2.
Adv Sci (Weinh) ; : e2401641, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666485

RESUMO

Genetic variants of GBA1 can cause the lysosomal storage disorder Gaucher disease and are among the highest genetic risk factors for Parkinson's disease (PD). GBA1 encodes the lysosomal enzyme beta-glucocerebrosidase (GCase), which orchestrates the degradation of glucosylceramide (GluCer) in the lysosome. Recent studies have shown that GluCer accelerates α-synuclein aggregation, exposing GCase deficiency as a major risk factor in PD pathology and as a promising target for treatment. This study investigates the interaction of GCase and three disease-associated variants (p.E326K, p.N370S, p.L444P) with their transporter, the lysosomal integral membrane protein 2 (LIMP-2). Overexpression of LIMP-2 in HEK 293T cells boosts lysosomal abundance of wt, E326K, and N370S GCase and increases/rescues enzymatic activity of the wt and E326K variant. Using a novel purification approach, co-purification of untagged wt, E326K, and N370S GCase in complex with His-tagged LIMP-2 from cell supernatant of HEK 293F cells is achieved, confirming functional binding and trafficking for these variants. Furthermore, a single helix in the LIMP-2 ectodomain is exploited to design a lysosome-targeted peptide that enhances lysosomal GCase activity in PD patient-derived and control fibroblasts. These findings reveal LIMP-2 as an allosteric activator of GCase, suggesting a possible therapeutic potential of targeting this interaction.

3.
Res Sq ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562713

RESUMO

Cluster of differentiation 109 (CD109) is a glycosylphosphatidylinositol (GPI) anchored cell surface protein, expressed on epithelial and endothelial cells, CD4+ and CD8+ T-cells, and premature lymphocytes. CD109 interacts with different cell surface receptors and thereby modulates intracellular signaling pathways, which ultimately changes cellular functions. One well-studied example is the interaction of CD109 with the TGFß/TGFß-receptor complex at the cell surface. CD109 silences intracellular SMAD2/3 signaling and targets TGFß/TGFß-receptor to the endosomal/lysosomal compartment. In recent years, CD109 emerged as a tumor marker for different tumor entities and expression of CD109 could be linked to adverse outcome in patients. In this study, we show that silencing of CD109 in human non-small cell lung cancer (NSCLC) cells, returns these cells to an epithelial like growth phenotype. On the transcriptional level, we describe changes in cell-cell contact and epithelial-mesenchymal transition associated gene clusters. At the cell surface, we identify desmoglein-2 (DSG2) as a new interaction partner of CD109 and demonstrate CD109 dependent targeting of DSG2 to the apical cell surface, where it forms desmosomes between apical and basal cell poles. Both, CD109 and DSG2 are genetic risk factors, linked to reduced overall survival in lung adenocarcinoma patients (subtype of NSCLC). In this study, we show the expression of both proteins in the same tumor and suggest a new CD109-DSG2 axis in NSCLC patients that could present a targetable therapeutic option in the future.

4.
Front Immunol ; 15: 1344346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390320

RESUMO

Introduction: Conformationally stabilized Env trimers have been developed as antigens for the induction of neutralizing antibodies against HIV-1. However, the non-glycosylated immunodominant base of these soluble antigens may compete with the neutralizing antibody response. This has prompted attempts to couple Env trimers to organic or inorganic nanoparticles with the base facing towards the carrier. Such a site-directed coupling could not only occlude the base of the trimer, but also enhance B cell activation by repetitive display. Methods: To explore the effect of an ordered display of HIV-1 Env on microspheres on the activation of Env-specific B cells we used Bind&Bite, a novel covalent coupling approach for conformationally sensitive antigens based on heterodimeric coiled-coil peptides. By engineering a trimeric HIV-1 Env protein with a basic 21-aa peptide (Peptide K) extension at the C-terminus, we were able to covalently biotinylate the antigen in a site-directed fashion using an acidic complementary peptide (Peptide E) bearing a reactive site and a biotin molecule. This allowed us to load our antigen onto streptavidin beads in an oriented manner. Results: Microspheres coated with HIV-1 Env through our Bind&Bite system showed i) enhanced binding by conformational anti-HIV Env broadly neutralizing antibodies (bNAbs), ii) reduced binding activity by antibodies directed towards the base of Env, iii) higher Env-specific B cell activation, and iv) were taken-up more efficiently after opsonization compared to beads presenting HIV-1 Env in an undirected orientation. Discussion: In comparison to site-directed biotinylation via the Avi-tag, Bind&Bite, offers greater flexibility with regard to alternative covalent protein modifications, allowing selective modification of multiple proteins via orthogonal coiled-coil peptide pairs. Thus, the Bind&Bite coupling approach via peptide K and peptide E described in this study offers a valuable tool for nanoparticle vaccine design where surface conjugation of correctly folded antigens is required.


Assuntos
Soropositividade para HIV , HIV-1 , Humanos , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Peptídeos , Fagocitose
5.
Acta Neuropathol ; 147(1): 28, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305941

RESUMO

Biallelic loss of SPG11 function constitutes the most frequent cause of complicated autosomal recessive hereditary spastic paraplegia (HSP) with thin corpus callosum, resulting in progressive multisystem neurodegeneration. While the impact of neuroinflammation is an emerging and potentially treatable aspect in neurodegenerative diseases and leukodystrophies, the role of immune cells in SPG11-HSP patients is unknown. Here, we performed a comprehensive immunological characterization of SPG11-HSP, including examination of three human postmortem brain donations, immunophenotyping of patients' peripheral blood cells and patient-specific induced pluripotent stem cell-derived microglia-like cells (iMGL). We delineate a previously unknown role of innate immunity in SPG11-HSP. Neuropathological analysis of SPG11-HSP patient brain tissue revealed profound microgliosis in areas of neurodegeneration, downregulation of homeostatic microglial markers and cell-intrinsic accumulation of lipids and lipofuscin in IBA1+ cells. In a larger cohort of SPG11-HSP patients, the ratio of peripheral classical and intermediate monocytes was increased, along with increased serum levels of IL-6 that correlated with disease severity. Stimulation of patient-specific iMGLs with IFNγ led to increased phagocytic activity compared to control iMGL as well as increased upregulation and release of proinflammatory cytokines and chemokines, such as CXCL10. On a molecular basis, we identified increased STAT1 phosphorylation as mechanism connecting IFNγ-mediated immune hyperactivation and SPG11 loss of function. STAT1 expression was increased both in human postmortem brain tissue and in an Spg11-/- mouse model. Application of an STAT1 inhibitor decreased CXCL10 production in SPG11 iMGL and rescued their toxic effect on SPG11 neurons. Our data establish neuroinflammation as a novel disease mechanism in SPG11-HSP patients and constitute the first description of myeloid cell/ microglia activation in human SPG11-HSP. IFNγ/ STAT1-mediated neurotoxic effects of hyperreactive microglia upon SPG11 loss of function indicate that immunomodulation strategies may slow down disease progression.


Assuntos
Paraplegia Espástica Hereditária , Animais , Camundongos , Humanos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Doenças Neuroinflamatórias , Proteínas/genética , Neurônios/patologia , Mutação
6.
Clin Neuroradiol ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277058

RESUMO

PURPOSE: To quantify the effects of CSF pressure alterations on intracranial venous morphology and hemodynamics in idiopathic intracranial hypertension (IIH) and spontaneous intracranial hypotension (SIH) and assess reversibility when the underlying cause is resolved. METHODS: We prospectively examined venous volume, intracranial venous blood flow and velocity, including optic nerve sheath diameter (ONSD) as a noninvasive surrogate of CSF pressure changes in 11 patients with IIH, 11 age-matched and sex-matched healthy controls and 9 SIH patients, before and after neurosurgical closure of spinal dural leaks. We applied multiparametric MRI including 4D flow MRI, time-of-flight (TOF) and T2-weighted half-Fourier acquisition single-shot turbo-spin echo (HASTE). RESULTS: Sinus volume overlapped between groups at baseline but decreased after treatment of intracranial hypotension (p = 0.067) along with a significant increase of ONSD (p = 0.003). Blood flow in the middle and dorsal superior sagittal sinus was remarkably lower in patients with higher CSF pressure (i.e., IIH versus controls and SIH after CSF leak closure) but blood flow velocity was comparable cross-sectionally between groups and longitudinally in SIH. CONCLUSION: We were able to demonstrate the interaction of CSF pressure, venous volumetry, venous hemodynamics and ONSD using multiparametric brain MRI. Closure of CSF leaks in SIH patients resulted in symptoms suggestive of increased intracranial pressure and caused a subsequent decrease of intracranial venous volume and of blood flow within the superior sagittal sinus while ONSD increased. In contrast, blood flow parameters from 4D flow MRI did not discriminate IIH, SIH and controls as hemodynamics at baseline overlapped at most vessel cross-sections.

7.
Clin Neuroradiol ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289378

RESUMO

PURPOSE: Various MRI-based techniques were tested for the differentiation of neurodegenerative Parkinson syndromes (NPS); the value of these techniques in direct comparison and combination is uncertain. We thus compared the diagnostic performance of macrostructural, single compartmental, and multicompartmental MRI in the differentiation of NPS. METHODS: We retrospectively included patients with NPS, including 136 Parkinson's disease (PD), 41 multiple system atrophy (MSA) and 32 progressive supranuclear palsy (PSP) and 27 healthy controls (HC). Macrostructural tissue probability values (TPV) were obtained by CAT12. The microstructure was assessed using a mesoscopic approach by diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI), and diffusion microstructure imaging (DMI). After an atlas-based read-out, a linear support vector machine (SVM) was trained on a training set (n = 196) and validated in an independent test cohort (n = 40). The diagnostic performance of the SVM was compared for different inputs individually and in combination. RESULTS: Regarding the inputs separately, we observed the best diagnostic performance for DMI. Overall, the combination of DMI and TPV performed best and correctly classified 88% of the patients. The corresponding area under the receiver operating characteristic curve was 0.87 for HC, 0.97 for PD, 1.0 for MSA, and 0.99 for PSP. CONCLUSION: We were able to demonstrate that (1) MRI parameters that approximate the microstructure provided substantial added value over conventional macrostructural imaging, (2) multicompartmental biophysically motivated models performed better than the single compartmental DTI and (3) combining macrostructural and microstructural information classified NPS and HC with satisfactory performance, thus suggesting a complementary value of both approaches.

8.
Eur J Neurosci ; 59(2): 308-315, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086536

RESUMO

Multiple system atrophy (MSA) is a rare and rapidly progressive atypical parkinsonian disorder characterized by oligodendroglial cytoplasmic inclusions containing α-synuclein (α-syn), demyelination, inflammation and neuronal loss. To date, no disease-modifying therapy is available. Targeting α-syn-driven oligodendroglial dysfunction and demyelination presents a potential therapeutic approach for restricting axonal dysfunction, neuronal loss and disease progression. The present study investigated the promyelinogenic potential of sobetirome, a blood-brain barrier permeable and central nervous system selective thyromimetic in the context of an in vitro MSA model. Oligodendrocyte precursor cells (OPCs) were obtained from transgenic mice overexpressing human α-syn specifically in oligodendrocytes (MBP29 mouse line), a well-described MSA model, and non-transgenic littermates. mRNA and protein expression analyses revealed a substantial rescue effect of sobetirome on myelin-specific proteins in control and α-syn overexpressing oligodendrocytes. Furthermore, myelination analysis using nanofibres confirmed that sobetirome increases both the length and number of myelinated segments per oligodendrocyte in primary murine α-syn overexpressing oligodendrocytes and their respective control. These results suggest that sobetirome may be a promising thyromimetic compound targeting an important neuropathological hallmark of MSA.


Assuntos
Doenças Desmielinizantes , Atrofia de Múltiplos Sistemas , Fenóis , Camundongos , Humanos , Animais , Atrofia de Múltiplos Sistemas/tratamento farmacológico , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Acetatos/metabolismo , Camundongos Transgênicos , Oligodendroglia/metabolismo , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças
9.
Rofo ; 196(1): 25-35, 2024 Jan.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-37793417

RESUMO

BACKGROUND: Photon-counting detector computed tomography (PCD-CT) is a promising new technology with the potential to fundamentally change workflows in the daily routine and provide new quantitative imaging information to improve clinical decision-making and patient management. METHOD: The contents of this review are based on an unrestricted literature search of PubMed and Google Scholar using the search terms "photon-counting CT", "photon-counting detector", "spectral CT", "computed tomography" as well as on the authors' own experience. RESULTS: The fundamental difference with respect to the currently established energy-integrating CT detectors is that PCD-CT allows for the counting of every single photon at the detector level. Based on the identified literature, PCD-CT phantom measurements and initial clinical studies have demonstrated that the new technology allows for improved spatial resolution, reduced image noise, and new possibilities for advanced quantitative image postprocessing. CONCLUSION: For clinical practice, the potential benefits include fewer beam hardening artifacts, a radiation dose reduction, and the use of new or combinations of contrast agents. In particular, critical patient groups such as oncological, cardiovascular, lung, and head & neck as well as pediatric patient collectives benefit from the clinical advantages. KEY POINTS: · Photon-counting computed tomography (PCD-CT) is being used for the first time in routine clinical practice, enabling a significant dose reduction in critical patient populations such as oncology, cardiology, and pediatrics.. · Compared to conventional CT, PCD-CT enables a reduction in electronic image noise.. · Due to the spectral data sets, PCD-CT enables fully comprehensive post-processing applications.. CITATION FORMAT: · Hagen F, Soschynski M, Weis M et al. Photon-counting computed tomography - clinical application in oncological, cardiovascular, and pediatric radiology. Fortschr Röntgenstr 2024; 196: 25 - 34.


Assuntos
Radiologia , Tomografia Computadorizada por Raios X , Humanos , Criança , Tomografia Computadorizada por Raios X/métodos , Meios de Contraste , Tórax , Imagens de Fantasmas , Pulmão
10.
J Extracell Vesicles ; 12(7): e12338, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37408115

RESUMO

Ovarian cancer (OvCa) is the gynaecological disorder with the poorest prognosis due to the fast development of chemoresistance. We sought to connect chemoresistance and cancer cell-derived extracellular vesicles (EV). The mechanisms of how chemoresistance is sustained by EV remained elusive. One potentially contributing factor is A Disintegrin and Metalloprotease 17 (ADAM17)-itself being able to promote chemoresistance and inducing tumour cell proliferation and survival via the Epidermal Growth Factor Receptor (EGFR) pathway by shedding several of its ligands including Amphiregulin (AREG). We now demonstrate that upon chemotherapeutic treatment, proteolytically active ADAM17 is released in association with EV from OvCa cells. In terms of function, we show that patient-derived EV induce AREG shedding and restore chemoresistance in ADAM17-deficient cells. Confirming that ADAM17-containing EV transmit chemoresistance in OvCa, we propose that ADAM17 levels (also on EV) might serve as an indicator for tumour progression and the chemosensitivity status of a given patient.


Assuntos
Antineoplásicos , Vesículas Extracelulares , Neoplasias Ovarianas , Humanos , Feminino , Proteínas ADAM/metabolismo , Receptores ErbB , Vesículas Extracelulares/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Proteína ADAM17
11.
Ocul Surf ; 29: 401-405, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37321448

RESUMO

Epithelial-mesenchymal transition (EMT) constitutes an important pathway in organ fibrosis seen in the lungs, liver, eye, and salivary glands. This review summarizes the EMT observed within the lacrimal gland during its development, tissue damage and repair along with possible translational implications. Existing animal and human studies have reported the increased expression of EMT regulators i.e., transcription factors like Snail, TGF-ß1 within the lacrimal glands, and a possible role of reactive oxygen species, which might be initiating the cascade of EMT. In these studies, EMT is typically detected by reduced E-cadherin expression in the epithelial cells and increased Vimentin and Snail expression within the lacrimal glands' myoepithelial or ductal epithelial cells. Other than specific markers, electron microscopic evidence of disrupted basal lamina, increased collagen deposition, reorganised cytoskeleton of myoepithelial cells also indicated EMT. Very few studies have shown myoepithelial cells to be the cells transitioning into mesenchymal cells with increased extracellular matrix deposition within the lacrimal glands. EMT in animal models seemed reversible as glands got repaired after damage with IL-1α injection or duct ligation and transiently used the EMT as a means for tissue repair. The EMT cells also expressed nestin, a marker for progenitor cells in a rabbit duct ligation model. However, lacrimal glands of ocular graft versus host disease and IgG4 dacryoadenitis demonstrate irreversible acinar atrophy along with signs of EMT-fibrosis, reduced E-cadherin, and increased Vimentin and Snail expression. Future studies exploring the molecular mechanisms of EMT and thereby developing targeted therapies capable of transforming the mesenchymal cells into epithelial cells or blocking the EMT might help in the restoration of the lacrimal gland function.


Assuntos
Aparelho Lacrimal , Animais , Humanos , Coelhos , Aparelho Lacrimal/metabolismo , Transição Epitelial-Mesenquimal , Vimentina/metabolismo , Fibrose , Caderinas/metabolismo , Morfogênese , Células Epiteliais/metabolismo
12.
Theranostics ; 13(5): 1594-1606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056570

RESUMO

Rationale: To establish a spatially exact co-registration procedure between in vivo multiparametric magnetic resonance imaging (mpMRI) and (immuno)histopathology of soft tissue sarcomas (STS) to identify imaging parameters that reflect radiation therapy response of STS. Methods: The mpMRI-Protocol included diffusion-weighted (DWI), intravoxel-incoherent motion (IVIM), and dynamic contrast-enhancing (DCE) imaging. The resection specimen was embedded in 6.5% agarose after initial fixation in formalin. To ensure identical alignment of histopathological sectioning and in vivo imaging, an ex vivo MRI scan of the specimen was rigidly co-registered with the in vivo mpMRI. The deviating angulation of the specimen to the in vivo location of the tumor was determined. The agarose block was trimmed accordingly. A second ex vivo MRI in a dedicated localizer with a 4 mm grid was performed, which was matched to a custom-built sectioning machine. Microtomy sections were stained with hematoxylin and eosin. Immunohistochemical staining was performed with anti-ALDH1A1 antibodies as a radioresistance and anti-MIB1 antibodies as a proliferation marker. Fusion of the digitized microtomy sections with the in vivo mpMRI was accomplished through nonrigid co-registration to the in vivo mpMRI. Co-registration accuracy was qualitatively assessed by visual assessment and quantitatively evaluated by computing target registration errors (TRE). Results: The study sample comprised nine tumor sections from three STS patients. Visual assessment after nonrigid co-registration showed a strong morphological correlation of the histopathological specimens with ex vivo MRI and in vivo mpMRI after neoadjuvant radiation therapy. Quantitative assessment of the co-registration procedure using TRE analysis of different pairs of pathology and MRI sections revealed highly accurate structural alignment, with a total median TRE of 2.25 mm (histology - ex vivo MRI), 2.22 mm (histology - in vivo mpMRI), and 2.02 mm (ex vivo MRI - in vivo mpMRI). There was no significant difference between TREs of the different pairs of sections or caudal, middle, and cranial tumor parts, respectively. Conclusion: Our initial results show a promising approach to obtaining accurate co-registration between histopathology and in vivo MRI for STS. In a larger cohort of patients, the method established here will enable the prospective identification and validation of in vivo imaging biomarkers for radiation therapy response prediction and monitoring in STS patients via precise molecular and cellular correlation.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Estudos Prospectivos , Sefarose , Imageamento por Ressonância Magnética/métodos , Sarcoma/diagnóstico por imagem , Sarcoma/radioterapia
13.
Glia ; 71(8): 1890-1905, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37017184

RESUMO

The high-mobility-group domain-containing transcription factor Sox9 confers glial competence to neuroepithelial precursors in the developing central nervous system and is an important determinant of astroglial and oligodendroglial specification. In oligodendroglial cells, it remains expressed in oligodendrocyte progenitor cells (OPCs) of the developing nervous system, but is shut off in differentiating oligodendrocytes as well as in OPCs that persist in the adult nervous system. To better understand the role of Sox9 in OPCs, we generated mouse models that allowed oligodendroglial expression of a Sox9 transgene during development or in the adult. With transgene expression beginning in the last trimester of pregnancy, the number of OPCs increased dramatically, followed by comparable gains in the number of pre-myelinating and myelinating oligodendrocytes as assessed by marker gene expression. This argues that Sox9 boosts oligodendrogenesis during ontogenetic development at all stages, including terminal oligodendrocyte differentiation. When Sox9 transgene expression started in the adult, many transgene-expressing OPCs failed to maintain their progenitor cell identity and instead converted into myelinating oligodendrocytes. As infrequent and inefficient differentiation of adult OPCs is one of the main obstacles to effective remyelination in demyelinating diseases such as Multiple Sclerosis, increased Sox9 levels in adult OPCs may substantially increase their remyelination capacity.


Assuntos
Esclerose Múltipla , Oligodendroglia , Camundongos , Animais , Oligodendroglia/metabolismo , Diferenciação Celular/fisiologia , Neuroglia/metabolismo , Esclerose Múltipla/metabolismo , Células-Tronco/metabolismo , Bainha de Mielina/metabolismo
14.
Front Mol Biosci ; 10: 1026810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876041

RESUMO

The cell surface receptor cluster of differentiation 44 (CD44) is the main hyaluronan receptor of the human body. At the cell surface, it can be proteolytically processed by different proteases and was shown to interact with different matrix metalloproteinases. Upon proteolytic processing of CD44 and generation of a C-terminal fragment (CTF), an intracellular domain (ICD) is released after intramembranous cleavage by the γ-secretase complex. This intracellular domain then translocates to the nucleus and induces transcriptional activation of target genes. In the past CD44 was identified as a risk gene for different tumor entities and a switch in CD44 isoform expression towards isoform CD44s associates with epithelial to mesenchymal transition (EMT) and cancer cell invasion. Here, we introduce meprin ß as a new sheddase of CD44 and use a CRISPR/Cas9 approach to deplete CD44 and its sheddases ADAM10 and MMP14 in HeLa cells. We here identify a regulatory loop at the transcriptional level between ADAM10, CD44, MMP14 and MMP2. We show that this interplay is not only present in our cell model, but also across different human tissues as deduced from GTEx (Gene Tissue Expression) data. Furthermore, we identify a close relation between CD44 and MMP14 that is also reflected in functional assays for cell proliferation, spheroid formation, migration and adhesion.

15.
Rofo ; 195(8): 691-698, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36863367

RESUMO

BACKGROUND: Photon-counting computed tomography (PCCT) is a promising new technology with the potential to fundamentally change today's workflows in the daily routine and to provide new quantitative imaging information to improve clinical decision-making and patient management. METHOD: The content of this review is based on an unrestricted literature search on PubMed and Google Scholar using the search terms "Photon-Counting CT", "Photon-Counting detector", "spectral CT", "Computed Tomography" as well as on the authors' experience. RESULTS: The fundamental difference with respect to the currently established energy-integrating CT detectors is that PCCT allows counting of every single photon at the detector level. Based on the identified literature, PCCT phantom measurements and initial clinical studies have demonstrated that the new technology allows improved spatial resolution, reduced image noise, and new possibilities for advanced quantitative image postprocessing. CONCLUSION: For clinical practice, the potential benefits include fewer beam hardening artifacts, radiation dose reduction, and the use of new contrast agents. In this review, we will discuss basic technical principles and potential clinical benefits and demonstrate first clinical use cases. KEY POINTS: · Photon-counting computed tomography (PCCT) has been implemented in the clinical routine. · Compared to energy-integrating detector CT, PCCT allows the reduction of electronic image noise. · PCCT provides increased spatial resolution and a higher contrast-to-noise ratio. · The novel detector technology allows the quantification of spectral information. CITATION FORMAT: · Stein T, Rau A, Russe MF et al. Photon-Counting Computed Tomography - Basic Principles, Potenzial Benefits, and Initial Clinical Experience. Fortschr Röntgenstr 2023; 195: 691 - 698.


Assuntos
Fótons , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas
17.
J Mol Biol ; 435(12): 167932, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572237

RESUMO

Lysosomes are specialized organelles with an acidic pH that act as recycling hubs for intracellular and extracellular components. They harbour numerous different hydrolytic enzymes to degrade substrates like proteins, peptides, and glycolipids. Reduced catalytic activity of lysosomal enzymes can cause the accumulation of these substrates and loss of lysosomal integrity, resulting in lysosomal dysfunction and lysosomal storage disorders (LSDs). Post-mitotic cells, such as neurons, seem to be highly sensitive to damages induced by lysosomal dysfunction, thus LSDs often manifest with neurological symptoms. Interestingly, some LSDs and Parkinson's disease (PD) share common cellular pathomechanisms, suggesting convergence of aetiology of the two disease types. This is further underlined by genetic associations of several lysosomal genes involved in LSDs with PD. The increasing number of lysosome-associated genetic risk factors for PD makes it necessary to understand functions and interactions of lysosomal proteins/enzymes both in health and disease, thereby holding the potential to identify new therapeutic targets. In this review, we highlight genetic and mechanistic interactions between the complex lysosomal network, LSDs and PD, and elaborate on methodical challenges in lysosomal research.


Assuntos
Doenças por Armazenamento dos Lisossomos , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Hidrolases/metabolismo , Lisossomos/metabolismo , Neurônios/metabolismo
18.
Genes (Basel) ; 15(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275596

RESUMO

Fatty acid hydroxylase-associated neurodegeneration (FAHN/SPG35) is caused by pathogenic variants in FA2H and has been linked to a continuum of specific motor and non-motor neurological symptoms, leading to progressive disability. As an ultra-rare disease, its mutational spectrum has not been fully elucidated. Here, we present the prototypical workup of a novel FA2H variant, including clinical and in silico validation. An 18-year-old male patient presented with a history of childhood-onset progressive cognitive impairment, as well as progressive gait disturbance and lower extremity muscle cramps from the age of 15. Additional symptoms included exotropia, dystonia, and limb ataxia. Trio exome sequencing revealed a novel homozygous c.75C>G (p.Cys25Trp) missense variant in the FA2H gene, which was located in the cytochrome b5 heme-binding domain. Evolutionary conservation, prediction models, and structural protein modeling indicated a pathogenic loss of function. Brain imaging showed characteristic features, thus fulfilling the complete multisystem neurodegenerative phenotype of FAHN/SPG35. In summary, we here present a novel FA2H variant and provide prototypical clinical findings and structural analyses underpinning its pathogenicity.


Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso , Oxigenases de Função Mista , Paraplegia Espástica Hereditária , Masculino , Humanos , Adolescente , Oxigenases de Função Mista/genética , Imageamento por Ressonância Magnética , Mutação , Transtornos Heredodegenerativos do Sistema Nervoso/genética
19.
Nat Commun ; 13(1): 6266, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271073

RESUMO

Genetic variants in the DNA methyltransferase 3 A (DNMT3A) locus have been associated with inflammatory bowel disease (IBD). DNMT3A is part of the epigenetic machinery physiologically involved in DNA methylation. We show that DNMT3A plays a critical role in maintaining intestinal homeostasis and gut barrier function. DNMT3A expression is downregulated in intestinal epithelial cells from IBD patients and upon tumor necrosis factor treatment in murine intestinal organoids. Ablation of DNMT3A in Caco-2 cells results in global DNA hypomethylation, which is linked to impaired regenerative capacity, transepithelial resistance and intercellular junction formation. Genetic deletion of Dnmt3a in intestinal epithelial cells (Dnmt3aΔIEC) in mice confirms the phenotype of an altered epithelial ultrastructure with shortened apical-junctional complexes, reduced Goblet cell numbers and increased intestinal permeability in the colon in vivo. Dnmt3aΔIEC mice suffer from increased susceptibility to experimental colitis, characterized by reduced epithelial regeneration. These data demonstrate a critical role for DNMT3A in orchestrating intestinal epithelial homeostasis and response to tissue damage and suggest an involvement of impaired epithelial DNMT3A function in the etiology of IBD.


Assuntos
DNA Metiltransferase 3A , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Células CACO-2 , Mucosa Intestinal/metabolismo , Colo/patologia , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Fatores de Necrose Tumoral/metabolismo , DNA/metabolismo
20.
Brain ; 145(9): 3131-3146, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36103408

RESUMO

Pathogenic variants in SPAST, the gene coding for spastin, are the single most common cause of hereditary spastic paraplegia, a progressive motor neuron disease. Spastin regulates key cellular functions, including microtubule-severing and endoplasmic reticulum-morphogenesis. However, it remains unclear how alterations in these cellular functions due to SPAST pathogenic variants result in motor neuron dysfunction. Since spastin influences both microtubule network and endoplasmic reticulum structure, we hypothesized that spastin is necessary for the regulation of Ca2+ homeostasis via store-operated calcium entry. Here, we show that the lack of spastin enlarges the endoplasmic reticulum and reduces store-operated calcium entry. In addition, elevated levels of different spastin variants induced clustering of STIM1 within the endoplasmic reticulum, altered the transport of STIM1 to the plasma membrane and reduced store-operated calcium entry, which could be rescued by exogenous expression of STIM1. Importantly, store-operated calcium entry was strongly reduced in induced pluripotent stem cell-derived neurons from hereditary spastic paraplegia patients with pathogenic variants in SPAST resulting in spastin haploinsufficiency. These neurons developed axonal swellings in response to lack of spastin. We were able to rescue both store-operated calcium entry and axonal swellings in SPAST patient neurons by restoring spastin levels, using CRISPR/Cas9 to correct the pathogenic variants in SPAST. These findings demonstrate that proper amounts of spastin are a key regulatory component for store-operated calcium entry mediated Ca2+ homeostasis and suggest store-operated calcium entry as a disease relevant mechanism of spastin-linked motor neuron disease.


Assuntos
Paraplegia Espástica Hereditária , Cálcio/metabolismo , Humanos , Microtúbulos , Neurônios Motores/metabolismo , Espastina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...