Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 31(37): 10183-9, 2015 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-26317405

RESUMO

Surface-initiated ring-opening polymerization (SI-ROP) of polycaprolactone (PCL) and polylactide (PLA) polymer brushes with controlled degradation rates were prepared on oxide substrates. PCL brushes were polymerized from hydroxyl-terminated monolayers utilizing triazabicyclodecene (TBD) as the polymerization catalyst. A consistent brush thickness of 40 nm could be achieved with a reproducible unique crystalline morphology. The organocatalyzed PCL brushes were chain extended using lactide in the presence of zirconium n-butoxide to successfully grow PCL/PLA block copolymer (PCL-b-PLA) brushes with a final thickness of 55 nm. The degradation properties of "grafted from" PCL brush and the PCL-b-PLA brush were compared to "grafted to" PCL brushes, and we observed that the brush density plays a major role in degradation kinetics. Solutions of methanol/water at pH 14 were used to better solvate the brushes and increase the kinetics of degradation. This framework enables a control of degradation that allows for the precise removal of these coatings.


Assuntos
Compostos Azabicíclicos/química , Poliésteres/química , Polímeros/química , Zircônio/química , Catálise , Polimerização
2.
Acc Chem Res ; 47(10): 2999-3008, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25127014

RESUMO

Advances in key 21st century technologies such as biosensors, biomedical implants, and organic light-emitting diodes rely heavily on our ability to imagine, design, and understand spatially complex interfaces. Polymer-based thin films provide many advantages in this regard, but the direct synthesis of polymers with incompatible functional groups is extremely difficult. Using postpolymerization modification in conjunction with click chemistry can circumvent this limitation and result in multicomponent surfaces that are otherwise unattainable. The two methods used to form polymer thin films include physisorption and chemisorption. Physisorbed polymers suffer from instability because of the weak intermolecular forces between the film and the substrate, which can lead to dewetting, delamination, desorption, or displacement. Covalent immobilization of polymers to surfaces through either a "grafting to" or "grafting from" approach provides thin films that are more robust and less prone to degradation. The grafting to technique consists of adsorbing a polymer containing at least one reactive group along the backbone to form a covalent bond with a complementary surface functionality. Grafting from involves polymerization directly from the surface, in which the polymer chains deviate from their native conformation in solution and stretch away from the surface because of the high density of chains. Postpolymerization modification (PPM) is a strategy used by our groups over the past several years to immobilize two or more different chemical functionalities onto substrates that contain covalently grafted polymer films. PPM exploits monomers with reactive pendant groups that are stable under the polymerization conditions but are readily modified via covalent attachment of the desired functionality. "Click-like" reactions are the most common type of reactions used for PPM because they are orthogonal, high-yielding, and rapid. Some of these reactions include thiol-based additions, activated ester coupling, azide-alkyne cycloadditions, some Diels-Alder reactions, and non-aldol carbonyl chemistry such as oxime, hydrazone, and amide formation. In this Account, we highlight our research combining PPM and click chemistry to generate complexity in polymer thin films. For the purpose of this Account, we define a complex coating as a polymer film grafted to a planar surface that acts as a template for the patterning of two or more discrete chemical functionalities using PPM. After a brief introduction to grafting, the rest of the review is arranged in terms of the sequence in which PPM is performed. First, we describe sequential functionalization using iterations of the same click-type reaction. Next, we discuss the use of two or more different click-like reactions performed consecutively, and we conclude with examples of self-sorting reactions involving orthogonal chemistries used for one-pot surface patterning.

3.
Chem Commun (Camb) ; 50(40): 5307-9, 2014 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-24270591

RESUMO

Poly(pentafluorophenyl acrylate) was covalently attached to silicon oxide through the direct coupling of the reactive ester to surface silanol groups. Subsequently, reactive microcapillary printing (R-µCaP) and a one-pot, self-sorting postpolymerization modification reaction were used to generate patterns of spatially resolved chemical functionality.

4.
Langmuir ; 29(19): 5920-6, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23581996

RESUMO

This Article describes the generation of a patterned surface that can be postpolymerization modified to incorporate fragile macromolecules or delicate biomolecules without the need for special equipment. Two monomers that undergo different click reactions, pentafluorophenyl acrylate (PFPA) and 4-(trimethylsilyl) ethynylstyrene (TMSES), were sequentially polymerized from a silicon surface in the presence of a shadowmask with UV light, generating 12.5 and 62 µm pitch patterns. Two different dyes, 1-aminomethylpyrene (AMP) and 5-azidofluorescein (AF), were covalently attached to the polymer brushes through aminolysis and dual desilylation/copper(I)-catalyzed alkyne/azide cycloaddition (CuAAC) in one pot. Unlike most CuAAC reactions, the terminal alkyne of TMSES was not deprotected prior to functionalization. Although a 2 nm thickness increase was observed for poly(PFPA) brushes after polymerization of TMSES, cross-contamination was not visible through fluorescence microscopy after functionalization.


Assuntos
Polímeros/síntese química , Química Click , Microscopia de Fluorescência , Estrutura Molecular , Tamanho da Partícula , Polimerização , Polímeros/química , Propriedades de Superfície
5.
Langmuir ; 28(41): 14693-702, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23009188

RESUMO

The postpolymerization functionalization of poly(N-hydroxysuccinimide 4-vinylbenzoate) brushes with reactive alkynes that differ in relative rates of activity of alkyne-azide cycloaddition reactions is described. The alkyne-derived polymer brushes undergo "click"-type cycloadditions with azido-containing compounds by two mechanisms: a strain-promoted alkyne-azide cycloaddition (SPAAC) with dibenzocyclooctyne (DIBO) and azadibenzocyclooctyne (ADIBO) or a copper-catalyzed alkyne-azide cycloaddition (CuAAC) to a propargyl group (PPG). Using a pseudo-first-order limited rate equation, rate constants for DIBO, ADIBO, and PPG-derivatized polymer brushes functionalized with an azide-functionalized dye were calculated as 7.7 × 10(-4), 4.4 × 10(-3), and 2.0 × 10(-2) s(-1), respectively. The SPAAC click reactions of the surface bound layers were determined to be slower than the equivalent reactions in solution, but the relative ratio of the reaction rates for the DIBO and ADIBO SPAAC reactions was consistent between solution and the polymer layer. The rate of functionalization was not influenced by the diffusion of azide into the polymer scaffold as long as the concentration of azide in solution was sufficiently high. The PPG functionalization by CuAAC had an extremely fast rate, which was comparable to other surface click reaction rates. Preliminary studies of dilute solution azide functionalization indicate that the diffusion-limited regime of brush functionalization impacts a 50 nm polymer brush layer and decreases the pseudo-first-order rate by a constant diffusion-limited factor of 0.233.


Assuntos
Alcinos/química , Azidas/química , Polímeros/química , Catálise , Química Click , Ciclização , Estrutura Molecular , Polimerização , Polímeros/síntese química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...