Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS Pathog ; 17(10): e1009991, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610054

RESUMO

Corruption of cellular prion protein (PrPC) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrPC, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrPC roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrPC expressing 1C11 neuronal stem cell line to those of PrPnull-1C11 cells stably repressed for PrPC expression, we here unravel that PrPC contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrPC tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids ß-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrPC metabolic role by pathogenic prions PrPSc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids ß-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrPSc-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.


Assuntos
Glucose/metabolismo , Degeneração Neural/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Estresse Oxidativo/fisiologia , Proteínas Quinases/metabolismo
3.
Cell Stress Chaperones ; 23(1): 115-126, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28712054

RESUMO

Abundant evidence has accumulated showing that fetal alcohol exposure broadly modifies DNA methylation profiles in the brain. DNA methyltransferases (DNMTs), the enzymes responsible for DNA methylation, are likely implicated in this process. However, their regulation by ethanol exposure has been poorly addressed. Here, we show that alcohol exposure modulates DNMT protein levels through multiple mechanisms. Using a neural precursor cell line and primary mouse embryonic fibroblasts (MEFs), we found that ethanol exposure augments the levels of Dnmt3a, Dnmt3b, and Dnmt3l transcripts. We also unveil similar elevation of mRNA levels for other epigenetic actors upon ethanol exposure, among which the induction of lysine demethylase Kdm6a shows heat shock factor dependency. Furthermore, we show that ethanol exposure leads to specific increase in DNMT3A protein levels. This elevation not only relies on the upregulation of Dnmt3a mRNA but also depends on posttranscriptional mechanisms that are mediated by NADPH oxidase-dependent production of reactive oxygen species (ROS). Altogether, our work underlines complex regulation of epigenetic actors in response to alcohol exposure at both transcriptional and posttranscriptional levels. Notably, the upregulation of DNMT3A emerges as a prominent molecular event triggered by ethanol, driven by the generation of ROS.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Etanol/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Camundongos , NADPH Oxidases/metabolismo , Células-Tronco Neurais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
PLoS One ; 11(6): e0156779, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27327609

RESUMO

A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types.


Assuntos
Encéfalo/metabolismo , Modelos Biológicos , Proteínas Priônicas/deficiência , Proteoma/metabolismo , Sequência de Aminoácidos , Animais , Antígeno CD56/metabolismo , Proteínas de Ligação a Calmodulina , Linhagem Celular , Análise por Conglomerados , Ontologia Genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas dos Microfilamentos , Substrato Quinase C Rico em Alanina Miristoilada , Ácido N-Acetilneuramínico/metabolismo , Proteínas Priônicas/metabolismo , Proteômica , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...