Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Z Med Phys ; 29(3): 216-228, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30409729

RESUMO

Proton radiotherapy (PT) requires accurate target alignment before each treatment fraction, ideally utilizing 3D in-room X-ray computed tomography (CT) imaging. Typically, the optimal patient position is determined based on anatomical landmarks or implanted markers. In the presence of non-rigid anatomical changes, however, the planning scenario cannot be exactly reproduced and positioning should rather aim at finding the optimal position in terms of the actually applied dose. In this work, dose-guided patient alignment, implemented as multicriterial optimization (MCO) problem, was investigated in the scope of intensity-modulated and double-scattered PT (IMPT and DSPT) for the first time. A method for automatically determining the optimal patient position with respect to pre-defined clinical goals was implemented. Linear dose interpolation was used to access a continuous space of potential patient shifts. Fourteen head and neck (H&N) and eight prostate cancer patients with up to five repeated CTs were included. Dose interpolation accuracy was evaluated and the potential dosimetric advantages of dose-guided over bony-anatomy-based patient alignment investigated by comparison of clinically relevant target and organ-at-risk (OAR) dose-volume histogram (DVH) parameters. Dose interpolation was found sufficiently accurate with average pass-rates of 90% and 99% for an exemplary H&N and prostate patient, respectively, using a 2% dose-difference criterion. Compared to bony-anatomy-based alignment, the main impact of automated MCO-based dose-guided positioning was a reduced dose to the serial OARs (spinal cord and brain stem) for the H&N cohort. For the prostate cohort, under-dosage of the target structures could be efficiently diminished. Limitations of dose-guided positioning were mainly found in reducing target over-dosage due to weight loss for H&N patients, which might require adaptation of the treatment plan. Since labor-intense online quality-assurance is not required for dose-guided patient positioning, it might, nevertheless, be considered an interesting alternative to full online re-planning for initially mitigating the effects of anatomical changes.


Assuntos
Posicionamento do Paciente/métodos , Terapia com Prótons , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada , Estudos de Coortes , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imageamento Tridimensional , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X
2.
J Appl Clin Med Phys ; 18(6): 104-113, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28921843

RESUMO

PURPOSE: Evaluation of dose degradation by anatomic changes for head-and-neck cancer (HNC) intensity-modulated proton therapy (IMPT) relative to intensity-modulated photon therapy (IMRT) and identification of potential indicators for IMPT treatment plan adaptation. METHODS: For 31 advanced HNC datasets, IMPT and IMRT plans were recalculated on a computed tomography scan (CT) taken after about 4 weeks of therapy. Dose parameter changes were determined for the organs at risk (OARs) spinal cord, brain stem, parotid glands, brachial plexus, and mandible, for the clinical target volume (CTV) and the healthy tissue outside planning target volume (PTV). Correlation of dose degradation with target volume changes and quality of rigid CT matching was investigated. RESULTS: Recalculated IMPT dose distributions showed stronger degradation than the IMRT doses. OAR analysis revealed significant changes in parotid median dose (IMPT) and near maximum dose (D1ml ) of spinal cord (IMPT, IMRT) and mandible (IMPT). OAR dose parameters remained lower in IMPT cases. CTV coverage (V95% ) and overdose (V107% ) deteriorated for IMPT plans to (93.4 ± 5.4)% and (10.6 ± 12.5)%, while those for IMRT plans remained acceptable. Recalculated plans showed similarly decreased PTV conformity, but considerable hotspots, also outside the PTV, emerged in IMPT cases. Lower CT matching quality was significantly correlated with loss of PTV conformity (IMPT, IMRT), CTV homogeneity and coverage (IMPT). Target shrinkage correlated with increased dose in brachial plexus (IMRT, IMPT), hotspot generation outside the PTV (IMPT) and lower PTV conformity (IMRT). CONCLUSIONS: The study underlines the necessity of precise positioning and monitoring of anatomy changes, especially in IMPT which might require adaptation more often. Since OAR doses remained typically below constraints, IMPT plan adaptation will be indicated by target dose degradations.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Órgãos em Risco/efeitos da radiação , Fótons/uso terapêutico , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Radiometria/métodos , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA