Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 147: 85-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26048060

RESUMO

(79)Se is among the most important long lived radionuclides in spent nuclear fuel and selenite, SeO3(2-), is its typical form in intermediate redox potential. The sorption behaviour of selenite and the bacterial impact on the selenite sorption in a 7-m-deep profile of a nutrient-poor boreal bog was studied using batch sorption experiments. The batch distribution coefficient (Kd) values of selenite decreased as a function of sampling depth and highest Kd values, 6600 L/kg dry weight (DW), were observed in the surface moss and the lowest in the bottom clay at 1700 L/kg DW. The overall maximum sorption was observed at pH between 3 and 4 and the Kd values were significantly higher in unsterilized compared to sterilized samples. The removal of selenite from solution by Pseudomonas sp., Burkholderia sp., Rhodococcus sp. and Paenibacillus sp. strains isolated from the bog was affected by incubation temperature and time. In addition, the incubation of sterilized surface moss, subsurface peat and gyttja samples with added bacteria effectively removed selenite from the solution and on average 65% of selenite was removed when Pseudomonas sp. or Burkholderia sp. strains were used. Our results demonstrate the important role of bacteria for the removal of selenite from the solution phase in the bog environment, having a high organic matter content and a low pH.


Assuntos
Bactérias/metabolismo , Ácido Selenioso/metabolismo , Radioisótopos de Selênio/metabolismo , Poluentes Radioativos do Solo/metabolismo , Poluentes Radioativos da Água/metabolismo , Áreas Alagadas , Adsorção , Aerobiose , Anaerobiose , Finlândia
2.
J Environ Radioact ; 147: 22-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26010098

RESUMO

(135)Cs is among the most important radionuclides in the long-term safety assessments of spent nuclear fuel, due to its long half-life of 2.3 My and large inventory in spent nuclear fuel. Batch sorption experiments were conducted to evaluate the sorption behavior of radiocesium ((134)Cs) in the surface moss, peat, gyttja, and clay layers of 7-m-deep profiles taken from a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of radiocesium increased as a function of sampling depth. The highest Kd values, with a geometric mean of 3200 L/kg dry weight (DW), were observed in the bottom clay layer and the lowest in the 0.5-1.0 m peat layer (50 L/kg DW). The maximum sorption in all studied layers was observed at a pH between 7 and 9.5. The in situ Kd values of (133)Cs in surface Sphagnum moss, peat and gyttja samples were one order of magnitude higher than the Kd values obtained using the batch method. The highest in situ Kd values (9040 L/kg DW) were recorded for the surface moss layer. The sterilization of fresh surface moss, peat, gyttja and clay samples decreased the sorption of radiocesium by 38%, although the difference was not statistically significant. However, bacteria belonging to the genera Pseudomonas, Paenibacillus, Rhodococcus and Burkholderia isolated from the bog were found to remove radiocesium from the solution under laboratory conditions. The highest biosorption was observed for Paenibacillus sp. V0-1-LW and Pseudomonas sp. PS-0-L isolates. When isolated bacteria were added to sterilized bog samples, the removal of radiocesium from the solution increased by an average of 50% compared to the removal recorded for pure sterilized peat. Our results demonstrate that the sorption of radiocesium in the bog environment is dependent on pH and the type of the bog layer and that common environmental bacteria prevailing in the bog can remove cesium from the solution phase.


Assuntos
Radioisótopos de Césio/metabolismo , Poluentes Radioativos do Solo/metabolismo , Poluentes Radioativos da Água/metabolismo , Adsorção , Finlândia , Concentração de Íons de Hidrogênio , Áreas Alagadas
3.
J Environ Radioact ; 143: 110-122, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25752706

RESUMO

Batch sorption experiments were conducted to evaluate the sorption behaviour of iodide and the microbial impact on iodide sorption in the surface moss, subsurface peat, gyttja, and clay layers of a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of iodide decreased as a function of sampling depth. The highest Kd values, 4800 L/Kg dry weight (DW) (geometric mean), were observed in the fresh surface moss and the lowest in the bottom clay (geometric mean 90 mL/g DW). In the surface moss, peat and gyttja layers, which have a high organic matter content (on average 97%), maximum sorption was observed at a pH between ∼ 4 and 5 and in the clay layer at pH 2. The Kd values were significantly lower in sterilized samples, being 20-fold lower than the values found for the unsterilized samples. In addition, the recolonization of sterilized samples with a microbial population from the fresh samples restored the sorption capacity of surface moss, peat and gyttja samples, indicating that the decrease in the sorption was due to the destruction of microbes and supporting the hypothesis that microbes are necessary for the incorporation of iodide into the organic matter. Anoxic conditions reduced the sorption of iodide in fresh, untreated samples, similarly to the effect of sterilization, which supports the hypothesis that iodide is oxidized into I2/HIO before incorporation into the organic matter. Furthermore, the Kd values positively correlated with peroxidase activity in surface moss, subsurface peat and gyttja layers at +20 °C, and with the bacterial cell counts obtained from plate count agar at +4 °C. Our results demonstrate the importance of viable microbes for the sorption of iodide in the bog environment, having a high organic matter content and a low pH.


Assuntos
Iodetos/metabolismo , Radioisótopos do Iodo/metabolismo , Microbiologia do Solo , Poluentes Radioativos do Solo/metabolismo , Áreas Alagadas , Adsorção , Silicatos de Alumínio/análise , Argila , Finlândia , Sedimentos Geológicos/análise , Sedimentos Geológicos/microbiologia , Concentração de Íons de Hidrogênio , Solo/química , Sphagnopsida/metabolismo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...