Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 169: 18-28, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31536755

RESUMO

Oil palm (Elaeis guineensis) can accumulate up to 88% oil in fruit mesocarp. A previous transcriptome study of oil palm fruits indicated that genes coding for three diacylglycerol acyltransferases (DGATs), designated as EgDGAT1_3, EgDGAT2_2 and EgWS/DGAT_1 (according to Rosli et al., 2018) were highly expressed in mesocarp during oil accumulation. In the present study, the corresponding open reading frames were isolated, and characterized by heterologous expression in the mutant yeast H1246, which is devoid of neutral lipid synthesis. Expression of EgDGAT1_3 or EgDGAT2_2 could restore TAG synthesis, confirming that both proteins are true DGAT. In contrast, expression of EgWS/DGAT_1 resulted in the synthesis of fatty acid isoamyl esters (FAIEs) with saturated long-chain and very-long-chain fatty acids. In the presence of exogenously supplied fatty alcohols, EgWS/DGAT_1 was able to produce wax esters, indicating that EgWS/DGAT_1 codes for an acyltransferase with wax ester synthase but no DGAT activity. Finally, the complete wax ester biosynthetic pathway was reconstituted in yeast by coexpressing EgWS/DGAT_1 with a fatty acyl reductase from Tetrahymena thermophila. Altogether, our results characterized two novel DGATs from oil palm as well as a putative wax ester synthase that preferentially using medium chain fatty alcohols and saturated very-long chain fatty acids as substrates.


Assuntos
Arecaceae/química , Diacilglicerol O-Aciltransferase/genética , Álcoois Graxos/metabolismo , Óleo de Palmeira/química , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Arecaceae/enzimologia , Clonagem Molecular , Diacilglicerol O-Aciltransferase/metabolismo , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Expressão Gênica , Engenharia Genética/métodos , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Fases de Leitura Aberta , Óleo de Palmeira/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Tetrahymena thermophila/química , Tetrahymena thermophila/enzimologia
2.
Methods Mol Biol ; 1835: 179-189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109652

RESUMO

In this study, we have produced for the first time a fish phospholipase (PLA2) in heterologous system (E. coli). The Diplodus annularis PLA2 (DaPLA2) was then refolded from inclusion bodies and purified by Ni-affinity chromatography. We used the pH-stat method (with emulsified phosphatidylcholine as substrate) and the monomolecular film technique (using various glycerophospholipids substrates spread in the form of monomolecular films at the air-water interface) to access the biochemical and kinetic properties of the recombinant DaPLA2. The DaPLA2 was found to be active and stable at higher temperatures (37-50 °C) than expected. Interestingly, DaPLA2 hydrolyzes efficiently both purified phosphatidylglycerol and phosphatidylethanolamine at 20 mN/m. These analytical results corroborate with the fact that the catalytic activity of DaPLA2, measured with the pH-stat using egg yolk as substrate, is mainly due to the hydrolysis of the PE fraction present in egg yolk, whereas the phosphatidylglycerol is a hallmark substrate for the most secreted PLA2-IB.


Assuntos
Peixes/genética , Peixes/metabolismo , Expressão Gênica , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Animais , Clonagem Molecular , Ativação Enzimática , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Espectrometria de Massas , Fosfolipases A2/isolamento & purificação , Redobramento de Proteína
3.
Chem Phys Lipids ; 211: 16-29, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28624308

RESUMO

Here we report the cDNA cloning of a phospholipase A2 (PLA2) from five Sparidae species. The deduced amino acid sequences show high similarity with pancreatic PLA2. In addition, a phylogenetic tree derived from alignment of various available sequences revealed that Sparidae PLA2 are closer to avian PLA2 group IB than to mammals' ones. In order to understand the structure-function relationships of these enzymes, we report here the recombinant expression in E.coli, the refolding and characterization of His-tagged annular seabream PLA2 (AsPLA2). A single Ni-affinity chromatography step was used to obtain a highly purified recombinant AsPLA2 with a molecular mass of 15kDa as attested by gel electrophoresis and MALDI-TOF mass spectrometry data. The enzyme has a specific activity of 400U.mg-1 measured on phosphatidylcholine at pH 8.5 and 50°C. The enzyme high thermo-activity and thermo-stability make it a potential candidate in various biological applications. The 3D structure models of these enzymes were compared with structures of phylogenetically related pancreatic PLA2. By following these models and utilizing molecular dynamics simulations, the resistance of the AsPLA2 at high temperatures was explained. Using the monomolecular film technique, AsPLA2 was found to be active on various phospholipids spread at the air/water interface at a surface pressure between 12 and 25dyncm-1. Interestingly, this enzyme was shown to be mostly active on dilauroyl-phosphatidylglycerol monolayers and this behavior was confirmed by molecular docking and dynamics simulations analysis. The discovery of a thermo-active new member of Sparidae PLA2, provides new insights on structure-activity relationships of fish PLA2.


Assuntos
Modelos Moleculares , Fosfolipases A2/metabolismo , Dourada/metabolismo , Animais , Fosfolipases A2/química
4.
J Agric Food Chem ; 65(11): 2468-2480, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28287729

RESUMO

Novel phospholipase (PLA2) genes from the Sparidae family were cloned. The sequenced PLA2 revealed an identity with pancreatic PLA2 group IB. To better understand the structure/function relationships of these enzymes and their evolution, the Diplodus annularis PLA2 (DaPLA2) was overexpressed in E. coli. The refolded enzyme was purified by Ni-affinity chromatography and has a molecular mass of 15 kDa as determined by MALDI-TOF spectrometry. Interestingly, unlike the pancreatic type, the DaPLA2 was active and stable at higher temperatures, which suggests its great potential in biotechnological applications. The 3D structure of DaPLA2 was constructed to gain insights into the functional properties of sparidae PLA2. Molecular docking and dynamic simulations were performed to explain the higher thermal stability and the substrate specificity of DaPLA2. Using the monolayer technique, the purified DaPLA2 was found to be active on various phospholipids ranging from 10 to 20 mN·m-1, which explained the absence of the hemolytic activity for DaPLA2.


Assuntos
Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Fosfolipases A2/química , Fosfolipases A2/metabolismo , Sequência de Aminoácidos , Animais , Estabilidade Enzimática , Proteínas de Peixes/genética , Proteínas de Peixes/isolamento & purificação , Peixes , Temperatura Alta , Cinética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Peso Molecular , Fosfolipases A2/genética , Fosfolipases A2/isolamento & purificação , Alinhamento de Sequência , Especificidade por Substrato
5.
Eng Life Sci ; 17(6): 664-677, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32624812

RESUMO

Red seabream digestive lipase (RsDL) was purified from fresh pyloric caeca. Pure RsDL has an apparent molecular mass of 50 kDa. The RsDL is more active on short-chain triacylglycerols (TC4), and enzymatic activity decreases when medium (TC8) or long-chain (olive oil) triacylglycerols were used as substrates. The specific activities of RsDL are very weak as compared to those obtained with classical pancreatic lipases. No colipase was detected in the red seabream pyloric caeca. Furthermore, the RsDL was not activated by a mammal colipase. Similar results were reported for annular seabream lipase. In order to explain structurally the discrepancies between sparidae and mammal lipases, genes encoding mature RsDL and five other lipases from sparidae fish species were cloned and sequenced. Phylogenetic studies indicated the closest homology of sparidae lipases to bird pancreatic ones. Structural models were built for annular seabream and RsDL under their closed and open forms using mammal pancreatic lipases as templates. Several differences were noticed when analyzing the amino acids corresponding to those involved in HPL binding to colipase. This is likely to prevent interaction between the fish lipase and the mammalian colipase and may explain the fact that mammalian colipase is not effective in activating sparidae lipases. In addition, several hydrophobic residues, playing a key role in anchoring pancreatic lipase onto the lipid interface, are replaced by polar residues in fish lipases. This might explain the reason why the latter enzymes display weak activity levels when compared to mammalian pancreatic lipases.

6.
Plant Signal Behav ; 8(11): e27141, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24305619

RESUMO

While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed.


Assuntos
Compartimento Celular , Gotículas Lipídicas/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Arecaceae/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Análise de Sequência de Proteína
7.
PLoS One ; 8(7): e68887, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922666

RESUMO

Wrinkled1 (AtWRI1) is a key transcription factor in the regulation of plant oil synthesis in seed and non-seed tissues. The structural features of WRI1 important for its function are not well understood. Comparison of WRI1 orthologs across many diverse plant species revealed a conserved 9 bp exon encoding the amino acids "VYL". Site-directed mutagenesis of amino acids within the 'VYL' exon of AtWRI1 failed to restore the full oil content of wri1-1 seeds, providing direct evidence for an essential role of this small exon in AtWRI1 function. Arabidopsis WRI1 is predicted to have three alternative splice forms. To understand expression of these splice forms we performed RNASeq of Arabidopsis developing seeds and queried other EST and RNASeq databases from several tissues and plant species. In all cases, only one splice form was detected and VYL was observed in transcripts of all WRI1 orthologs investigated. We also characterized a phylogenetically distant WRI1 ortholog (EgWRI1) as an example of a non-seed isoform that is highly expressed in the mesocarp tissue of oil palm. The C-terminal region of EgWRI1 is over 90 amino acids shorter than AtWRI1 and has surprisingly low sequence conservation. Nevertheless, the EgWRI1 protein can restore multiple phenotypes of the Arabidopsis wri1-1 loss-of-function mutant, including reduced seed oil, the "wrinkled" seed coat, reduced seed germination, and impaired seedling establishment. Taken together, this study provides an example of combining phylogenetic analysis with mutagenesis, deep-sequencing technology and computational analysis to examine key elements of the structure and function of the WRI1 plant transcription factor.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/metabolismo , Arecaceae/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Processamento Alternativo/genética , Sequência de Aminoácidos , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/química , Éxons/genética , Ácidos Graxos/metabolismo , Teste de Complementação Genética , Germinação , Dados de Sequência Molecular , Óleo de Palmeira , Fenótipo , Plantas Geneticamente Modificadas , Plântula/metabolismo , Sementes/ultraestrutura , Alinhamento de Sequência , Fatores de Transcrição/química
8.
Arabidopsis Book ; 11: e0161, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505340

RESUMO

Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.

9.
Proc Natl Acad Sci U S A ; 108(30): 12527-32, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21709233

RESUMO

Oil palm can accumulate up to 90% oil in its mesocarp, the highest level observed in the plant kingdom. In contrast, the closely related date palm accumulates almost exclusively sugars. To gain insight into the mechanisms that lead to such an extreme difference in carbon partitioning, the transcriptome and metabolite content of oil palm and date palm were compared during mesocarp development. Compared with date palm, the high oil content in oil palm was associated with much higher transcript levels for all fatty acid synthesis enzymes, specific plastid transporters, and key enzymes of plastidial carbon metabolism, including phosphofructokinase, pyruvate kinase, and pyruvate dehydrogenase. Transcripts representing an ortholog of the WRI1 transcription factor were 57-fold higher in oil palm relative to date palm and displayed a temporal pattern similar to its target genes. Unexpectedly, despite more than a 100-fold difference in flux to lipids, most enzymes of triacylglycerol assembly were expressed at similar levels in oil palm and date palm. Similarly, transcript levels for all but one cytosolic enzyme of glycolysis were comparable in both species. Together, these data point to synthesis of fatty acids and supply of pyruvate in the plastid, rather than acyl assembly into triacylglycerol, as a major control over the storage of oil in the mesocarp of oil palm. In addition to greatly increasing molecular resources devoted to oil palm and date palm, the combination of temporal and comparative studies illustrates how deep sequencing can provide insights into gene expression patterns of two species that lack genome sequence information.


Assuntos
Arecaceae/genética , Arecaceae/metabolismo , Metabolismo dos Carboidratos , Carbono/metabolismo , Etiquetas de Sequências Expressas , Ácidos Graxos/metabolismo , Frutas/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Modelos Biológicos , Óleo de Palmeira , Filogenia , Folhas de Planta/metabolismo , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade da Espécie , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
10.
Nat Biotechnol ; 29(6): 521-7, 2011 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-21623354

RESUMO

Date palm is one of the most economically important woody crops cultivated in the Middle East and North Africa and is a good candidate for improving agricultural yields in arid environments. Nonetheless, long generation times (5-8 years) and dioecy (separate male and female trees) have complicated its cultivation and genetic analysis. To address these issues, we assembled a draft genome for a Khalas variety female date palm, the first publicly available resource of its type for a member of the order Arecales. The ∼380 Mb sequence, spanning mainly gene-rich regions, includes >25,000 gene models and is predicted to cover ∼90% of genes and ∼60% of the genome. Sequencing of eight other cultivars, including females of the Deglet Noor and Medjool varieties and their backcrossed males, identified >3.5 million polymorphic sites, including >10,000 genic copy number variations. A small subset of these polymorphisms can distinguish multiple varieties. We identified a region of the genome linked to gender and found evidence that date palm employs an XY system of gender inheritance.


Assuntos
Arecaceae/classificação , Arecaceae/genética , Genoma de Planta , África do Norte , Alelos , Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Elementos de DNA Transponíveis , DNA de Plantas/genética , Bases de Dados Genéticas , Biblioteca Gênica , Oriente Médio , Linhagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
11.
Arabidopsis Book ; 8: e0133, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22303259

RESUMO

Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.

13.
FEBS Lett ; 579(27): 6067-73, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16226259

RESUMO

Triacylglycerol (TAG) lipases have been thoroughly characterized in mammals and microorganisms. By contrast, very little is known on plant TAG lipases. An Arabidopsis cDNA called AtLip1 (At2g15230), which exhibits strong homology to lysosomal acid lipase, was found to drive the synthesis of an active TAG lipase when expressed in the baculovirus system. The lipase had a maximal activity at pH 6 and the specific activity was estimated to be about 45 micromol min(-1) mg(-1) protein using triolein as a substrate. Knock-out mutant analysis showed no phenotype during germination indicating that this enzyme is fully dispensable for TAG storage breakdown during germination. Northern blot analyses indicated that the transcript is present in all tissues tested.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Lipase/química , Lipase/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Baculoviridae/genética , Expressão Gênica , Germinação , Humanos , Lipase/genética , Dados de Sequência Molecular , Mutação , Conformação Proteica , Triglicerídeos/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-16510997

RESUMO

The amoeba-infecting Mimivirus is the largest known double-stranded DNA virus, with a 400 nm particle size, comparable to that of mycoplasma. The complete sequence of its 1.2 Mbp genome has recently been determined [Raoult et al. (2004), Science, 306, 1344-1350] and revealed numerous genes that were not expected to be found in a virus, such as genes encoding translation components, including 4-amino-acyl tRNA synthetases and homologues to various translation initiation, elongation and termination factors. A comprehensive structural and functional study of these Mimivirus gene products was initiated, as they may hold important clues about the origin of DNA viruses. Here, the first preliminary crystallographic and functional results obtained on one of these targets, Mimivirus TyrRS, are reported. Preliminary phasing was obtained using an original combination of homology modelling and normal mode analysis. Experimental evidence that Mimivirus tyrosyl tRNA synthetase recombinant gene product does indeed activate tyrosine is also presented.


Assuntos
Aminoacil-tRNA Sintetases/química , Vírus de DNA/enzimologia , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/isolamento & purificação , Aminoacil-tRNA Sintetases/metabolismo , Amoeba/virologia , Animais , Sequência Conservada , Cristalografia por Raios X , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas Virais/química , Proteínas Virais/isolamento & purificação , Proteínas Virais/metabolismo
15.
Appl Environ Microbiol ; 69(12): 7395-400, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14660390

RESUMO

Marine microbiologists commonly assay lipase activities by using a synthetic fluorescent analog, 4-methylumbelliferyl (MUF)-oleate. The technique is convenient, but it is considered to be unspecific because of the structure of this analog. This study reports the design of a new specific and sensitive lipase assay based on the use of a radiolabeled triglyceride, [3H]triolein. Free fatty acids (FFA) resulting from its hydrolysis are isolated as a function of time in a one-step liquid-liquid extraction and then radioassayed. MUF-oleate and [3H]triolein techniques were compared by measuring lipase activities at similar substrate concentrations along a trophic gradient in the Southwest Lagoon of New Caledonia, near Nouméa. Hydrolysis rates decreased from the nearshore station to the offshore station and showed similar trends regardless of the technique used. Rates decreased from 5.83 to 0.88 nmol of FFA. liter-1. h-1 and from 0.76 to 0.23 nmol of 3H-FFA. liter-1. h-1, respectively. These results appeared to be consistent with bacterial production results, which also decreased similarly (from 0.59 to 0.26 micrograms of C. liter-1. h-1). However, the ratio of MUF-oleate activities to [3H]triolein activities, which was constant at the offshore stations (3.8 +/- 0.1), gradually increased at the nearshore stations (from 4.1 to 7.6). This result shows that the two assays respond in different ways to changes in environmental conditions and validates the need to set up more specific enzymatic assays.


Assuntos
Bactérias/enzimologia , Água Doce/microbiologia , Himecromona/análogos & derivados , Lipase/metabolismo , Trioleína/metabolismo , Trítio/metabolismo , Himecromona/metabolismo , Nova Caledônia , Radiometria , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...