Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
RSC Med Chem ; 15(1): 234-253, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38283229

RESUMO

Bacterial resistance toward available therapeutic agents has become a nightmare for the healthcare system, causing significant mortality as well as prolonged hospitalization, thereby needing the urgent attention of research groups working on antimicrobial drug development worldwide. Molecular hybridization is a well-established tool for developing multifunctional compounds to tackle drug resistance. Inspired by the antibacterial profiles of isatin and thymol, along with the efficiency of a triazole linker in molecular hybridization, herein, we report the design, synthesis and antibacterial activity of a novel series of triazole tethered thymol-isatin hybrids. Most of the hybrids exhibited a broad-spectrum antibacterial efficacy against standard human pathogenic as well as clinically isolated multidrug-resistant bacterial strains listed in the WHO's 'priority pathogen' list and also in the ESKAPE group. Among them, hybrid compound AS8 was the most effective against methicillin-resistant Staphylococcus aureus (MIC = 1.9 µM and MBC = 3.9 µM), exhibiting biofilm inhibitory potential. AS8 exhibited dehydrosqualene synthase (CrtM) inhibitory potential in MRSA and decreased the production of virulence factor staphyloxanthin, which is one of the key mechanisms of its anti-MRSA efficacy, which was further supported by molecular docking and simulation studies. Moreover, AS8 was found to be non-toxic and showed a potent in vivo antibacterial efficacy (90% survival at 10 mg kg-1) as well as a modulated immune response in the larva-based (Galleria mellonella) model of systemic infections. Overall findings confirmed that AS8 can be a promising candidate or take the lead in the treatment and further drug development against drug-resistant infectious diseases, especially against MRSA infections.

3.
Metab Brain Dis ; 38(7): 2355-2367, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37436587

RESUMO

Epilepsy, a chronic neurological condition, impacts millions of individuals globally and remains a significant contributor to both illness and mortality. Available antiepileptic drugs have serious side effects which warrants to explore different medicinal plants used for the management of epilepsy reported in Traditional Indian Medicinal System (TIMS). Therefore, we explored the antiepileptic potential of the Grewia tiliaefolia (Tiliaeceae) which is known for its neuroprotective properties. Aerial parts of G. tiliaefolia were subjected to extraction with increasing order of polarity viz. hexane, chloroform and methanol. Antioxidant potential of hexane, chloroform and methanol extracts of G. tiliaefolia was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay, total antioxidant capacity (TAC) assay, reducing power assay (RPA) and DNA nicking assay. Additionally, quantitative antioxidant assays were also conducted to quantify total phenolic (TPC) and total flavonoid content (TFC). As revealed by in vitro assays, methanol extract was found to contain more phenolic content. Hence, the methanol extract was further explored for its anticonvulsant potential in pentylenetetrazole (PTZ) induced acute seizures in mice. The methanol extract (400 mg/kg) significantly increased the latency to occurrence of myoclonic jerks and generalized tonic clonic seizures (GTCS). Additionally, it also reduced duration and seizure severity score associated with GTCS. The Grewia tiliaefolia methanol extract was further screened by Ultra High-Performance Liquid Chromatography (UHPLC) for presence of polyphenolic compounds, among which gallic acid and kaempferol were present in higher amount and were further analysed by in silico study to predict their possible binding sites and type of interactions these compounds show with gamma amino butyric acid (GABA) receptor and glutamate α amino-3- hydroxyl-5-methyl-4-isoxazolepropionic acid (Glu-AMPA) receptor. It was revealed that gallic acid and kaempferol had shown agonistic interaction for GABA receptor and antagonistic interaction for Glu-AMPA receptor. We concluded that G. tiliaefolia showed anticonvulsant potential possibly because of gallic acid and kaempferol possibly mediated through GABA and Glu-AMPA receptor.


Assuntos
Epilepsia , Grewia , Camundongos , Animais , Anticonvulsivantes/efeitos adversos , Pentilenotetrazol/toxicidade , Grewia/química , Hexanos/efeitos adversos , Quempferóis , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Metanol/efeitos adversos , Clorofórmio/efeitos adversos , Receptores de AMPA , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Ácido Gálico/uso terapêutico , Ácido gama-Aminobutírico
4.
AMB Express ; 13(1): 69, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418125

RESUMO

In the current study, Streptomyces levis strain HFM-2 has been isolated from healthy human gut. Streptomyces sp. HFM-2 was identified based on the polyphasic approach that included cultural, morphological, chemotaxonomical, phylogenetic, physiological, and biochemical characteristics. 16S rRNA gene sequence of strain HFM-2 exhibited 100% similarity with Streptomyces levis strain 15423 (T). The EtOAc extract of Streptomyces levis strain HFM-2 showed potential antioxidant activity, along with 69.53 ± 0.19%, 64.76 ± 0.13%, and 84.82 ± 0.21% of scavenging activity for ABTS, DPPH, and superoxide radicals, respectively at 600 µg/mL. The IC50 values i.e. 50% scavenging activity for DPPH, ABTS, and superoxide radicals were achieved at 497.19, 388.13, and 268.79 (µg/mL), respectively. The extract's reducing power and total antioxidant capacity were determined to be 856.83 ± 0.76 and 860.06 ± 0.01 µg AAE/mg of dry extract, respectively. In addition, the EtOAc extract showed protection against DNA damage from oxidative stress caused by Fenton's reagent, and cytotoxic activity against HeLa cervical cancer, Skin (431) cancer, Ehrlich-Lettre Ascites-E (EAC) carcinoma, and L929 normal cell lines. The IC50 values against HeLa, 431 skin, and EAC carcinoma cell lines were found to be 50.69, 84.07, and 164.91 µg/mL, respectively. The EtOAc extract showed no toxicity  towards L929 normal cells. In addition, flow cytometric analysis exhibited reduced mitochondrial membrane potential (MMP), and enhanced levels of reactive oxygen species (ROS). The EtOAc extract was chemically analyzed using GCMS to determine the components executing its bioactivities.

5.
Arch Pharm (Weinheim) ; 356(8): e2200579, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37276367

RESUMO

The objective of the present investigation was to prepare and optimize lyophilized mixed micelles (Lyp-EXE-MMs) of exemestane (EXE) with improved solubility, bioavailability, in vivo anticancer activity, and physical stability, by using various cryoprotectants. The prepared lyophilized mixed micelles were characterized by various techniques, including dynamic light scattering, zeta potential, powdered X-ray diffraction, differential scanning calorimetry (DSC), nuclear magnetic resonance (1 H NMR), transmission electron microscopy (TEM), and so on. Thereafter, the lyophilized micelles were evaluated for ex vivo permeation, in vitro drug release and gene/protein expression (RT-PCR and Western blot analysis) in MCF-7 breast cancer cells. The developed formulation was also investigated for its in vivo anticancer study in BALB/c mice with induced breast cancer. The use of trehalose (10% w/w) was proven to be a suitable cryoprotectant for these micelles. Lyp-EXE-MMs were spherical, with a particle size of 42.9 ± 3.8 nm and a polydispersity index of 0.307 ± 0.122. Furthermore, % drug loading and % entrapment efficiency were found to be 5.8 ± 1.4 and 89.1 ± 1.1, respectively. Lyp-EXE-MMs showed sustained release behavior as compared to EXE-suspensions in SGF/SIF (pH 1.2 and 6.8) and phosphate buffer saline (pH 7.4). The micelles induced apoptosis through the regulation of BAX, BCL2, Caspase-3, p53, and CYP19A1 in MCF-7 cells, which was correlated to enhanced ex vivo drug permeation. Animals receiving EXE micelle formulations showed reduced tumor volume and improved survivability and pharmacokinetic parameters as compared to pure EXE. Lyp-EXE-MMs were found to withstand simulated harsh conditions of SGF/SIF during stability studies. The fabricated EXE micellar preparations hold a promising approach for breast cancer treatment.


Assuntos
Androstadienos , Micelas , Animais , Camundongos , Relação Estrutura-Atividade , Solubilidade , Androstadienos/química , Androstadienos/farmacocinética , Portadores de Fármacos/química
6.
Environ Sci Pollut Res Int ; 30(35): 83452-83462, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344714

RESUMO

Pesticides are extremely hazardous to human health as well as various kinds of non-target organisms. The honey bee (Apis mellifera) is not only a dominant pollinator, but also a good indicator of pesticide residue and pollutants in the environment. At the time of sample collection in each village, the surrounding flora was Triticum aestivum and Brassica species. The area chosen for this study covered only 15% of the land in the state of Punjab, but pesticide consumption was approximately 75% of the state consumption. Pesticides in the collected samples (from six districts) were analyzed using RP-HPLC chromatography. The chemical methoxychlor (MC) was not found in any of the six villages' honey samples; however, spiromesifen (n = 5) and aldicarb (n = 5) were the most prevalent chemicals and were found in every honey sample. The pesticides carbendazim (n = 1) and parathion methyl (n = 1) were found only in Behman (longitude 29.9224° N and latitude 75.1137° E), and Malumazra (longitude 30.2468° N and latitude 75.8500° E). The carbofuran (n = 3) was discovered in Talwandi Sabo (longitude 29.984° N and latitude 75.8500° E), Himmatpura (longitude 30.5289° N and latitude 75.3616° E), and Malumazra, while atrazine (n = 4) was discovered in all except Malumazra. Three identical pesticides were observed in Chukrian (longitude 29.9759° N and latitude 75.4476° E) and Singo (longitude 29.9092° N and latitude 75.1589° E) indicating the same pesticides used in these villages. The given study gives a summary model to use A. mellifera as a quick monitoring bioindicator of the environment. This model helps to maintain a pesticide or pollutant database of selected areas for regular monitoring of the surrounding environment.


Assuntos
Poluentes Ambientais , Mel , Resíduos de Praguicidas , Praguicidas , Humanos , Abelhas , Animais , Praguicidas/análise , Cromatografia Líquida de Alta Pressão , Resíduos de Praguicidas/análise , Mel/análise , Poluentes Ambientais/análise
7.
Naunyn Schmiedebergs Arch Pharmacol ; 396(9): 2105-2125, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36929274

RESUMO

The aim of the current study is to evaluate the anti-psoriatic potential of bakuchiol (Bak) loaded solid lipid nanoparticles (SLNs) via modulating inflammatory and oxidative pathways. Bak-loaded SLNs were prepared using hot homogenization method and characterized by various spectroscopic techniques. Bak-SLNs suspension was formulated into gel using Carbopol. Different in vivo assays were executed to explore the role of inflammatory markers and oxidative enzymes in psoriasis. DLS (dynamic light scattering) analysis showed suitable particle size, zeta potential, and polydispersity index (PDI) of developed formulation. TEM (transmission electron microscopy) reveal the spherical shape of Bak-SLNs particles. The release studies confirmed the sustained release of Bak-SLNs-based gel. UV-B-induced psoriatic Wistar rat model showed significant anti-psoriatic effect of Bak via regulating inflammatory markers (NF-kB, IL-6, IL-4, and IL-10) and levels of anti-oxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione-S-transferase (GST). Furthermore, RT-qPCR analysis confirms that Bak downregulates the expression of inflammatory markers, while histology and immunohistology results also confirm the anti-psoriatic effect of Bak. The study indicates that Bak-loaded SLNs-based gel significantly downregulates the level of cytokines and interleukins involve in NF-kB signaling cascade; hence, it can prove to be a novel therapeutic approach to cure psoriasis.


Assuntos
Nanopartículas , Psoríase , Ratos , Animais , NF-kappa B , Ratos Wistar , Psoríase/tratamento farmacológico , Nanopartículas/química , Glutationa , Transdução de Sinais , Portadores de Fármacos/química
8.
Sci Rep ; 13(1): 4461, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932199

RESUMO

Mitochondrial impairment, energetic crisis and elevated oxidative stress have been demonstrated to play a pivotal role in the pathological processes of Huntington's disease (HD). 3-Nitropropionic acid (3-NPA) is a natural neurotoxin that mimics the neurological dysfunctions, mitochondrial impairments and oxidative imbalance of HD. The current investigation was undertaken to demonstrate the neuroprotective effect of 4-(methylthio)butyl isothiocyanate (4-MTBITC) against the 3-NPA induced neurotoxicity in human dopaminergic SH-SY5Y cells. The experimental evidence of oxidative DNA damage by 3-NPA was elucidated by pBR322 DNA nicking assay. In contrast, the 4-MTBITC considerably attenuated the DNA damage, suggesting its free radical scavenging action against 3-NPA and Fenton's reagent. The dose and time-dependent increase of 3-NPA revealed its neurotoxic dose as 0.5 mM after 24 h of treatment of SH-SY5Y cells in MTT assay. In order to determine the optimal dose at which 4-MTBITC protects cell death, the 3-NPA (IC50) induced cells were pretreated with different concentrations of 4-MTBITC for 1 h. The neuroprotective dose of 4-MTBITC against 3-NPA was found to be 0.25 µM. Additionally, the elevated GSH levels in cells treated with 4-MTBITC indicate its propensity to eliminate reactive species generated as a result of 3-NPA-induced mitochondrial dysfunction. Likewise, it was determined through microscopic and flow cytometric experiments that 3-NPA's induced overproduction of reactive species and a decline in mitochondrial membrane potential (MMP) could be efficiently prevented by pre-treating cells with 4-MTBITC. To elucidate the underlying molecular mechanism, the RT-qPCR analysis revealed that the pre-treatment of 4-MTBITC effectively protected neuronal cells against 3-NPA-induced cell death by preventing Caspase-3 activation, Brain-derived neurotrophic factor (BDNF) upregulation, activation of cAMP response element-binding protein (CREB) and Nrf2 induction. Together, our findings lend credence to the idea that pre-treatment with 4-MTBITC reduced 3-NPA-induced neurotoxicity by lowering redox impairment, apoptotic state, and mitochondrial dysfunction. The present work, in conclusion, presented the first proof that the phytoconstituent 4-MTBITC supports the antioxidant system, BDNF/TrkB/CREB signaling, and neuronal survival in dopaminergic SH-SY5Y cells against 3-NPA-induced oxidative deficits.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Humanos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/farmacologia , Estresse Oxidativo , Neurônios Dopaminérgicos , Oxirredução , Fármacos Neuroprotetores/farmacologia , Apoptose , Sobrevivência Celular , Linhagem Celular Tumoral
9.
Arch Microbiol ; 205(3): 93, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800037

RESUMO

In the recent past, the occurrence of fungal infections has increased drastically and candidiasis, caused prominently by Candida albicans, is foremost among them which has caused significant mortality and morbidity majorly in immune-compromised patients. Shikonin is a well-known natural naphthazarin derivative with promising antifungal efficacy, but it's mechanism of action is still unclear. Keeping this in view, present work was designed to get a mechanistic insight of anti-candida efficacy of shikonin via in vitro experiments and in situ molecular modelling studies. The current exploratory study is based on research that uses both qualitative and quantitative techniques, including minimum inhibitory concentration, minimum biofilm inhibitory concentration, time kill assay, cell cycle analysis and apoptotic assays, static biofilm formation assays, microscopic biofilm assessment assays, ergosterol content estimation and molecular docking/simulation studies. The study revealed a notable effect of shikonin against Candida albicans, including retardation of biofilms. Shikonin, with its increasing concentration leads to candidal cell apoptosis and necrosis establishing its dose-dependent effect. Additionally, it exhibited fungicidal activity via a mechanism of action likely related to ergosterol complexation which was further corroborated by molecular docking and simulation studies.


Assuntos
Candida albicans , Naftoquinonas , Humanos , Simulação de Acoplamento Molecular , Candida , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Naftoquinonas/farmacologia , Testes de Sensibilidade Microbiana , Biofilmes , Ergosterol
10.
Sci Rep ; 13(1): 2444, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765125

RESUMO

Medicinal plants possess range of phytochemicals accountable for their diverse biological activities. Presently, such compounds have been isolated from medicinal plants, characterized and evaluated for their pharmacological potential. In the present study, the efforts have been made to isolate the compound(s) from Grewia tiliaefolia Vahl., plant known for its ameliorative effect on brain related diseases such as anxiety, depression, cognitive disorders and Parkinson's disease. Plant extract was subjected to isolation of compound(s) using column chromatography and isolated compound was characterized by NMR FTIR and LCMS. The isolated compound was novel with the IUPAC name of the compound is propyl 3-hydroxy-10,13-dimethyl-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3H-cyclopenta[a]phenanthrene-17-carboxylate, designated as A-1 and has not been reported before. A-1 was further evaluated for its antioxidant potential using in vitro antioxidant assays (2,2-diphenyl-1-picryl-hydrazyl-hydrate, DPPH assay and reducing power assay, RPA). Also, Acetylcholinesterase (AChE) inhibitory potential of A-1 and extract was analysed. Results showed that A-1 exhibited significantly higher antioxidant activity in both DPPH and RPA assay as compared to plant extract. In case of AChE inhibitory activity again, A-1 has shown significantly higher activity as compared to plant extract. In silico study was conducted to predict its action on proteins playing crucial role in neurological and neurodegenerative disorders such as gamma amino butyric acid (GABA) receptor and glutamate α amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (Glu AMPA) receptor in epilepsy and AChE enzyme in Alzheimer's diseases. The compound has shown interaction in following order: AChE > GABA receptor > Glu AMPA receptor. Further, molecular dynamic simulations and ADME studies of A-1 and AChE enzyme revealed that A-1 yielded good results in all parameters and hence can relieve Alzheimer's like symptoms.


Assuntos
Grewia , Plantas Medicinais , Antioxidantes/farmacologia , Antioxidantes/química , Grewia/química , Acetilcolinesterase/metabolismo , Extratos Vegetais/química , Plantas Medicinais/metabolismo , Inibidores da Colinesterase/química
11.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 901-924, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36826494

RESUMO

Chronic kidney disease (CKD) affects a huge portion of the world's population and frequently leads to cardiovascular diseases (CVDs). It might be because of common risk factors between chronic kidney disease and cardiovascular diseases. Renal dysfunction caused by chronic kidney disease creates oxidative stress which in turn leads to cardiovascular diseases. Oxidative stress causes endothelial dysfunction and inflammation in heart which results in atherosclerosis. It ends in clogging of veins and arteries that causes cardiac stroke and myocardial infarction. To develop an innovative therapeutic approach and new drugs to treat these diseases, it is important to understand the pathophysiological mechanism behind the CKD and CVDs and their interrelationship. Natural phytoconstituents of plants such as polyphenolic compounds are well known for their medicinal value. Polyphenols are plant secondary metabolites with immense antioxidant properties, which can protect from free radical damage. Nowadays, polyphenols are generating a lot of buzz in the scientific community because of their potential health benefits especially in the case of heart and kidney diseases. This review provides a detailed account of the pathophysiological link between CKD and CVDs and the pharmacological potential of polyphenols and their nanoformulations in promoting cardiovascular and renal health.


Assuntos
Doenças Cardiovasculares , Glomerulonefrite , Insuficiência Renal Crônica , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Doença Crônica , Rim , Fatores de Risco , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/complicações
12.
Biotechnol Genet Eng Rev ; : 1-25, 2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36683273

RESUMO

Multidrug resistance (MDR) is considered as a major obstacle in achieving an effective treatment of breast cancer. Paclitaxel has been used to treat cancers of the cervical, breast, ovarian and brain but MDR limits its therapeutic potential. Phytochemicals have received much interest in recent decades especially in combination approaches to tackle MDR due to their negligible harm to healthy cells and synergistic potential. Considering this notion, the present study aimed at investigating the synergistic activity of 4-MTBITC and PTX against a panel of breast cancer cells. Our results revealed that the combination had a significant antiproliferative activity against T-47D cells. Mechanistic studies revealed that 4-MTBITC and PTX also promoted the production of reactive oxygen species (ROS) and reduced mitochondrial membrane potential. In the presence of 4-MTBITC- PTX, T-47D cells were found to be arrested in the G2/M phase which also confirmed the enhancement of late apoptotic cell population in the flow cytometer analysis. In western blot experiment, the combination had a significant decrease in Bcl-xl protein level, whereas a higher level of p53, cleaved caspase-3, and cleaved caspase-9 proteins compared to individual treatment in T-47D cells. The RT-qPCR analysis also showed that the combination had significant upregulation in the gene expression of p53, cytochrome-c, Apaf-1 and downregulation in the expression of Bcl-2 gene in T-47D cells. Hence, all the results showed that a combination of 4-MTBITC-PTX significantly enhanced the apoptosis pathway in the T-47D cell line which indicates its clinical application for the treatment of breast cancer.Abbreviations: Apaf-1: Apoptotic protease activating factor 1; AO/EB: Acridine orange/ethidium bromide; Bcl-2: B-cell lymphoma 2; CI: Combination Index; Cyt-c: Cytochrome c; CO2: Carbon dioxide; DCFH-DA 2,7-Dichloroflourescein diacetate; DMEM: Dulbecco's modified Eagle's medium; ELISA: Enzyme-linked immunosorbent assay; EA: Early apoptosis; EDTA: Ethylenediaminetetraacetic acid; L929: Normal mouse fibroblast cells; LA: Late apoptosis; L: Live; 4-MTBITC: 4-methylthiobutyl isothiocyanate; MCF-7: Human breast cancer cells; MDA-MB-231: Human triple negative breast cancer cells; MMP: Mitochondria membrane potential; MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide; NCCS: National Centre for Cell Science; N: Necrotic; PTX Paclitaxel; PVDF: Polyvinylidene fluoride; PAGE: Polyacrylamide gel electrophoresis; PBS: Phosphate-buffered saline; RPMI-1640: Roswell Park Memorial Institute Medium- 1640; RT-qPCR: Quantitative real-time polymerase chain reaction; ROS: Reactive oxygen species; Rh-123: Rhodamine123; g Relative centrifugal force; SDS: Sodium dodecyl sulphate; SEM: Scanning electron microscopy; T-47D: Human estrogen positive breast cancer cells; WB: Western blotting.

13.
Nat Prod Res ; 37(16): 2795-2800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36214700

RESUMO

Induction of hypersensitivity reactions (may be fatal too) by specific XO inhibitors has led to development of new molecules that are efficacious and have safer ADME profile. Among natural compounds, biologically active Alkannin/Shikonin (A/S) derivatives have unexplored XO inhibition potential. Therefore, their iso-hexenylnaphthazarin nucleus was studied and found that the nucleus is similar to that of allopurinol, signifying the XO inhibitory potential of these derivatives. For confirmation of their potential, ß,ß-dimethylacrylshikonin and deoxyshikonin were successfully isolated and characterised from Arnebia euchroma (Royle.) Johnst. (Boraginaceae) and were evaluated for in vitro XO inhibitory potential. ß,ß-dimethylacrylshikonin and deoxyshikonin showed a good XO inhibition potential with IC50 values of 7.475 ± 1.46 µg/mL and 4.487 ± 0.88 µg/mL, respectively. Results also validated the pharmacophore hypothesis, and it was concluded that nucleus iso-hexenylnaphthazarin can be remodelled for optimising the efficacy.

14.
Front Pharmacol ; 13: 1020602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330087

RESUMO

Nanoformulation-based combinational drug delivery systems are well known to overcome drug resistance in cancer management. Among them, nanoemulsions are well-known and thermodynamically stable drug delivery systems suitable for carrying hydrophobic drugs and phytoconstituents to tackle drug-resistant cancers. In the present study, we have investigated the effect of paclitaxel in combination with erucin (natural isothiocyanate isolated from the seeds of Eruca sativa) loaded in the frankincense oil-based nanoemulsion formulation. The choice of frankincense oil for the current study was based on reported research investigations stating its magnificient therapeutic potential against breast cancer. Optimized nanoemulsion of paclitaxel (PTX) and erucin (ER) combination (EPNE) provided sustained release and exhibited enhanced cytotoxicity towards human epithelial breast cancer cells (T-47D) as compared to individual ER and PTX. EPNE was further assessed for its antitumor activity in the 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer mice model. EPNE significantly decreased the levels of hepatic and renal parameters along with oxidative stress in breast cancer mice. Furthermore, EPNE also showed decreased levels of inflammatory cytokines TNF-α, IL-6. Histopathological examinations revealed restoration of the tumorous breast to normal tissues in EPNE-treated breast cancer mice. Therefore, EPNE can act as a viable lead and therapeutic option for drug-resistant breast cancer.

15.
Chin Herb Med ; 14(4): 511-527, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36405061

RESUMO

Alkannin/shikonin (A/S) and their derivatives are naturally occurring naphthoquinones majorly found in Boraginaceae family plants. They are integral constituents of traditional Chinese medicine Zicao (roots of Lithospermum erythrorhizon). In last two decades significant increase in pharmacological investigations on alkannin/shikonin and their derivatives has been reported that resulted in discovery of their novel mechanisms in various diseases and disorders. This review throws light on recently conducted pharmacological investigations on alkannin/shikonin and their derivatives and their outputs. Various analytical aspects are also discussed and brief summary of patent applications on inventions containing alkannin/shikonin and its derivatives is also provided.

16.
Environ Res ; 215(Pt 1): 114257, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36084676

RESUMO

In the present work we synthesize nickel oxide nanoparticles (NiO NPs) using Rhododendron arboretum (flower) (RNi), Tinospora cordifolia (stems) (GNi), Corylus jacquemontii (seeds) (CNi), and Nardostachys jatamansi (roots) (NNi) extracts by co-precipitation method. The synthesized NiO NPs were characterized in detail in terms of their morphological, crystalline nature, structural and antiproliferative activity against rat skeletal myoblast (L-6) cell lines. Morphological studies confirmed the formation of nanoparticles, while the structural and compositional characterization revealed the well-crystallinity and high purity of the synthesized nanoparticles. For biological applications and cytotoxicity examinations of the synthesized NPs, the rat skeletal myoblast (L-6) cell lines were subjected to study. By detailed cytotoxic investigations, it was observed that among the four kinds of NiO NPs prepared through different plant extracts, the Tinospora cordifolia (stems) showed strong antiproliferative activity against rat skeletal myoblast (L-6) cell lines and the calculated IC50 was 1.671 mg/mL. The observed antiproliferative activity towards different NiO NPs were in the order of GNi > NNi > RNi > CNi. The present studies demonstrate that simply synthesized NiO can efficiently be used as antiproliferative agents.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Nanopartículas , Animais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Níquel/metabolismo , Níquel/toxicidade , Extratos Vegetais/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
17.
Sci Rep ; 12(1): 12570, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869268

RESUMO

Roylea cinerea (D.Don) Baillon an indigenous medicinal plant of Lamiaceae family used for the treatment of several diseases. In the present study, its aqueous (leaves) extract was tested for genoprotective action against atrazine-induced chromosomal aberrations in the root tip cells of Allium cepa. Atrazine is a herbicide of triazine class commonly used to inhibit the growth of broad leaf and grassy weeds. In order to find the concentration of atrazine that exhibits maximum toxicity, its different concentrations (1, 5 and 10 µg/mL) were tested. It was observed that 10 µg/mL concentration was more toxic as it reduced the mitotic index and also increased the chromosomal aberrations. Among all the tested concentrations of aqueous (leaves) extracts (0.25. 0.5, 1.0, 1.5 and 3.0 µg/mL), the3.0 µg/mL concentration in both modes of experiments i.e. pre and post showed a significant reduction in chromosomal aberrations induced by atrazine. To understand the mechanism of protection by plant extract on atrazine-induced chromosomal abnormalities the RT-qPCR studies were conducted to observe the expression of marker genes Cyclin-dependent kinases (CDKs) (CDKA:1, CDKB2:1 and CDKD1:1. For this, the RNA was extracted from root tips treated with extract along with atrazine by TRIzol®. It was observed that aqueous extract of Roylea cinerea (D.Don) Baillon leaves upregulated the CDKs gene expression in both the modes i.e. pre and post treatments. A critical analysis of results indicated that aqueous extract ameliorated the chromosomal aberrations caused by atrazine which may be be due to the increased expression level of CDKs genes.


Assuntos
Atrazina , Lamiaceae , Atrazina/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Quinases Ciclina-Dependentes/genética , Cebolas/genética , Folhas de Planta , Raízes de Plantas
18.
Sci Rep ; 12(1): 9370, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672366

RESUMO

Medicinal plants are in use of humankind since ancient and still they are playing an important role in effective and safer natural drug delivery systems. Acacia nilotica (native of Egypt) commonly known as babul belongs to family Fabaceae, widely spread in India, Sri Lanka and Sudan. Being a common and important plant, using in many ways from fodder (shoots and leaves to animals) to dyeing (leather coloration) to medicine (root, bark, leaves, flower, gum, pods). The present study is focused on investigating the natural chemistry and important biological activities of the plant. Employing bioassay guided fractionation coupled with TLC and column chromatography, a pure fraction named AN-10 was isolated from ethyl acetate fraction of crude methanol extract which identified as "Betulin (Lupan-3ß,28-diol)" by Liebermann-Burchard test and structure elucidation by UV-Vis, NMR and MS techniques. A battery of in vitro biological assays for antioxidant, anti-inflammatory and anticancer were performed and betulin showed excellent potential in all assays. It was found that the inhibitory potential in all assays were dose dependent manner and after a range of concentration, the activities get leveled off with no further increase in activity.


Assuntos
Acacia , Triterpenos , Acacia/química , Animais , Casca de Planta/química , Extratos Vegetais/química , Triterpenos/análise , Triterpenos/farmacologia
19.
Toxicon ; 212: 19-33, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35395273

RESUMO

4-(methylthio)butyl isothiocyanate (4-MTBITC) also called erucin is abundantly present in the seeds of Eruca sativa plant closely related to cruciferous vegetables rich in isothiocyanates. We have previously reported the molecular targets of 4-MTBITC, but no acute, subacute and subchronic toxicity studies have been carried out to evaluate its safety. The non-everted gut sac method was used to study intestinal absorption and it revealed the highest absorption of 4-MTBITC in the jejunum. Dose-dependent pharmacokinetic parameters were observed in rats given 10, 20, and 40 mg/kg oral doses of 4-MTBITC. At the highest dose of 40 mg/kg, Cmax was 437.33 µg/ml and Tmax was 30 min, suggesting quick absorption and delayed elimination with elimination constant, 0.0036 ± 0.0002min-1. In a 14 days toxicity study, the mean LD50 of 4-MTBITC was 500 mg/kg body weight. After 28 and 90 days of treatment with 4-MTBITC (2.5, 10, 40 mg/kg/day), significant increases were observed in SGOT, cholesterol, and antioxidant enzymes. The levels of glycine, alanine and lysine were markedly increased in the liver tissue, thereby indicating that the liver was the target organ of 4-MTBITC induced toxicity in female animals. The histopathological examination of liver, kidney, and lung tissues revealed little focal necrosis, apoptosis, and reduction in the levels of amino acids involved in cellular metabolic pathways, indicating the anti-proliferative potential of 4-MTBITC against rapidly growing cells.


Assuntos
Apoptose , Isotiocianatos , Animais , Feminino , Isotiocianatos/toxicidade , Extratos Vegetais , Ratos
20.
Phytother Res ; 36(3): 1338-1352, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35088468

RESUMO

Diabetes is the most prevalent disorder in the world characterized by uncontrolled high blood glucose levels and nephropathy is one of the chief complications allied with hyperglycemia. Vanillic acid; the main bioactive compound derived from natural sources such as vegetables, fruits and plants possesses various pharmacological activities such as antioxidant, anti-inflammatory and anti-proliferative. The current study was designed to investigate the antidiabetic and renoprotective effects of vanillic acid by its various pharmacological activities. Streptozotocin (50 mg/kg)/nicotinamide (110 mg/kg) was used to induce diabetes in rats. Oral administration of vanillic acid once daily for 6 weeks (25, 50 and 100 mg/kg) significantly reduced the hyperglycemia, increased liver enzymes and normalized lipid profile that was altered in diabetic rats. Moreover, vanillic acid attenuated the impaired renal function as evidenced by a reduction in serum creatinine, urea, uric acid and urinary microproteinuria levels with a concomitant increase in urinary creatinine clearance in the nephropathic rats. Diabetic rats showed a marked increase in thiobarbituric acid reactive substances (TBARS) and superoxide anion generation (SAG) along with decreased reduced glutathione (GSH) in the renal tissue which was ameliorated in the vanillic acid-treated rats. Histopathologically, vanillic acid treatment was associated with reduced damage with normalized structural changes in renal tissue. Furthermore, treatment groups showed the suppression of upregulation of nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α, cyclo-oxygenase (COX)-2 and up-regulation of Nuclear factor-erythroid 2-related factor 2 (Nrf-2) in the renal tissue. In conclusion, vanillic acid's ameliorative impact on diabetic nephropathic rats may be attributed to its powerful free radical scavenging property, down-regulation of NF-κB, TNF-α, COX-2 and up-regulation of Nrf-2 proteins in renal tissue.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Ciclo-Oxigenase 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Rim , NF-kappa B/metabolismo , Estresse Oxidativo , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Ácido Vanílico/metabolismo , Ácido Vanílico/farmacologia , Ácido Vanílico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...