Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39182630

RESUMO

BACKGROUND: Deficiency of adenosine deaminase (ADA or ADA1) has broad clinical and genetic heterogeneity. Screening techniques can identify asymptomatic infants whose phenotype and prognosis are indeterminate, and who may carry ADA variants of unknown significance. OBJECTIVE: We systematically assessed the pathogenic potential of rare ADA missense variants to better define the relationship of genotype to red blood cell (RBC) total deoxyadenosine nucleotide (dAXP) content and to phenotype. METHODS: We expressed 46 ADA missense variants in the ADA-deficient SØ3834 strain of Escherichia coli and defined genotype categories (GCs) ranked I to IV by increasing expressed ADA activity. We assessed relationships among GC rank, RBC dAXP, and phenotype in 58 reference patients with 50 different genotypes. We used our GC ranking system to benchmark AlphaMissense for predicting variant pathogenicity, and we used a minigene assay to identify exonic splicing variants in ADA exon 9. RESULTS: The 46 missense variants expressed ∼0.001% to ∼70% of wild-type ADA activity (40% had <0.05% of wild-type ADA activity and 50% expressed >1%). RBC dAXP ranged from undetectable to >75% of total adenine nucleotides and correlated well with phenotype. Both RBC dAXP and clinical severity were inversely related to total ADA activity expressed by both inherited variants. Our GC scoring system performed better than AlphaMissense in assessing variant pathogenicity, particularly for less deleterious variants. CONCLUSION: For ADA deficiency, pathogenicity is a continuum and conditional, depending on the total ADA activity contributed by both inherited variants as indicated by GC rank. However, in patients with indeterminate phenotype identified by screening, RBC dAXP measured at diagnosis may have greater prognostic value than GC rank.

2.
J Biol Chem ; 279(20): 20993-8, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-15016824

RESUMO

Adenosine deaminase (ADA) is expressed intracellularly by all cells, but in some tissues, it is also associated with the cell surface multifunctional glycoprotein CD26/dipeptidyl peptidase IV. By modulating extracellular adenosine, this "ecto-ADA" may regulate adenosine receptor signaling implicated in various cellular functions. CD26 is expressed on the surface of human prostate cancer 1-LN cells acting as a receptor for plasminogen (Pg). Since ADA and Pg bind to CD26 at distinct but nearby sites, we investigated a possible interaction between these two proteins on the surface of 1-LN cells. Human ADA binds to CD26 on the surface 1-LN cells and immobilized CD26 isolated from the same cells with similar affinity. In both cases, ADA binding is diminished by mutation of ADA residues known to interact with CD26. ADA was also found to bind Pg 2 in the absence of CD26 via the Pg kringle 4 (K4) domain. In the presence of 1-LN cells or immobilized CD26, exogenous ADA enhances conversion of Pg 2 to plasmin by 1-LN endogenous urinary plasminogen activator (u-PA), as well as by added tissue Pg Activator (t-PA), suggesting that ADA and Pg bind simultaneously to CD26 in a ternary complex that stimulates the Pg activation by its physiologic activators. Consistent with this, in melanoma A375 cells that bind Pg, but do not express CD26, the rate of Pg activation was not affected by ADA. Thus, ADA may be a factor regulating events in prostate cancer cells that occur when Pg binds to the cell surface and is activated.


Assuntos
Adenosina Desaminase/metabolismo , Dipeptidil Peptidase 4/metabolismo , Plasminogênio/metabolismo , Neoplasias da Próstata/enzimologia , Adenosina Desaminase/química , Adenosina Desaminase/genética , Linhagem Celular Tumoral , Membrana Celular/enzimologia , Ativação Enzimática , Humanos , Cinética , Masculino , Mutagênese , Proteínas Recombinantes/metabolismo
4.
J Biol Chem ; 277(22): 19720-6, 2002 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-11901152

RESUMO

Human adenosine deaminase (ADA) occurs as a 41-kDa soluble monomer in all cells. On epithelia and lymphoid cells of humans, but not mice, ADA also occurs bound to the membrane glycoprotein CD26/dipeptidyl peptidase IV. This "ecto-ADA" has been postulated to regulate extracellular Ado levels, and also the function of CD26 as a co-stimulator of activated T cells. The CD26-binding site of human ADA has been localized by homolog scanning to the peripheral alpha2-helix (amino acids 126-143). Among the 5 non-conserved residues within this segment, Arg-142 in human and Gln-142 in mouse ADA largely determined the capacity for stable binding to CD26 (Richard, E., Arredondo-Vega, F. X., Santisteban, I., Kelly, S. J., Patel, D. D., and Hershfield, M. S. (2000) J. Exp. Med. 192, 1223-1235). We have now mutagenized conserved alpha2-helix residues in human and mouse ADA and used surface plasmon resonance to evaluate binding kinetics to immobilized rabbit CD26. In addition to Arg-142, we found that Glu-139 and Asp-143 of human ADA are also important for CD26 binding. Mutating these residues to alanine increased dissociation rates 6-11-fold and the apparent dissociation constant K(D) for wild type human ADA from 17 to 112-160 nm, changing binding free energy by 1.1-1.3 kcal/mol. This cluster of 3 charged residues appears to be a "functional epitope" that accounts for about half of the difference between human and mouse ADA in free energy of binding to CD26.


Assuntos
Adenosina Desaminase/química , Dipeptidil Peptidase 4/química , Alelos , Sequência de Aminoácidos , Animais , Arginina/química , Ácido Aspártico/química , Western Blotting , Cristalografia por Raios X , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Epitopos , Ácido Glutâmico/química , Humanos , Rim/metabolismo , Cinética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Coelhos , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície , Termodinâmica , Fatores de Tempo
5.
Blood ; 99(3): 1005-13, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11807006

RESUMO

Four patients from 3 Saudi Arabian families had delayed onset of immune deficiency due to homozygosity for a novel intronic mutation, g.31701T>A, in the last splice acceptor site of the adenosine deaminase (ADA) gene. Aberrant splicing mutated the last 4 ADA amino acids and added a 43-residue "tail" that rendered the protein unstable. Mutant complementary DNA (cDNA) expressed in Escherichia coli yielded 1% of the ADA activity obtained with wild-type cDNA. The oldest patient, 16 years old at diagnosis, had greater residual immune function and less elevated erythrocyte deoxyadenosine nucleotides than his 4-year-old affected sister. His T cells and Epstein-Barr virus (EBV) B cell line had 75% of normal ADA activity and ADA protein of normal size. DNA from these cells and his whole blood possessed 2 mutant ADA alleles. Both carried g.31701T>A, but one had acquired a deletion of the 11 adjacent base pair, g.31702-12, which suppressed aberrant splicing and excised an unusual purine-rich tract from the wild-type intron 11/exon 12 junction. During ADA replacement therapy, ADA activity in T cells and abundance of the "second-site" revertant allele decreased markedly. This finding raises an important issue relevant to stem cell gene therapy.


Assuntos
Adenosina Desaminase/deficiência , Genes Supressores , Mosaicismo/genética , Mutação , Sítios de Splice de RNA/genética , Adenosina Desaminase/administração & dosagem , Adenosina Desaminase/genética , Adolescente , Sequência de Bases , Pré-Escolar , Análise Mutacional de DNA , Saúde da Família , Feminino , Genótipo , Humanos , Lactente , Masculino , Arábia Saudita , Imunodeficiência Combinada Severa/etiologia , Imunodeficiência Combinada Severa/genética , Linfócitos T/citologia , Linfócitos T/enzimologia
6.
Arch. neurociencias ; 1(1): 20-6, ene.-mar. 1996. tab, ilus
Artigo em Espanhol | LILACS | ID: lil-210782

RESUMO

Durante las últimas dos décadas los avances en el campo de la biología molecular ha permitido la identificación de muchas enfermedades hereditarias. No obstante, poco se ha logrado en el área de su tratamiento. La finalidad de la terapia génica es la cura definitiva de las enfermedades asociadas a la ausencia de actividad o a la actividad inadecuada de los productos génicos causados por anormalidades en la información codificada en el ADN. Existen dos alternativas para llevar a cabo la terapia génica; la primera sería la administración del gen normal (sustitución funcional), y la segunda la reparación del gen anormal. Los mayores logros en terapia génica se han derivado de la primera ya que la segunda tiene mayor dificultad técnica. La terapia génica puede realizarse en células germinales y en células somáticas. Por razones éticas la terapia génica en células germinales no se ha permitido llevar a cabo en seres humanos. Las alternativas de tratamiento que brinda la terapia génica tienen como finalidad mejorar la salud de los pacientes para lograr el bienestar humano


Assuntos
Técnicas de Transferência de Genes/normas , Doenças Genéticas Inatas/diagnóstico , Genoma Viral , Biologia Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA