Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 355: 120527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457893

RESUMO

Global warming is increasing the vulnerability of ecosystems, especially in peninsular Spain. Biosphere Reserves are internationally protected areas that seek to protect biodiversity and, at the same time, promote sustainable development. Evaluating these protected areas is essential to verify environmental changes and establish priorities in their management. In this work, we have studied the time trends of NDVI in the high mountain Biosphere Reserves of Spain from 2001 to 2016 to check if the trend patterns are associated with some environmental variables. Significant differences were found between NDVI trends and high mountain Biosphere Reserves. Firstly, significant positive trends in NDVI were observed when analysing both reserves together. However, significant differences were found between the two reserves. The Ordesa-Viñamala Reserve shows higher positive NDVI trends and lower negative trends, while this pattern is reversed in Sierra Nevada. We observed how the fluctuations in temperature and drought due to climate change have already negatively affected the Mediterranean reserve (Sierra Nevada). In contrast, the alpine reserve (Ordesa-Viñamala) maintains positive NDVI trends. This study helps to close the gap in information related to Biosphere Reserves, which gives value to the work that is being carried out by the local communities that make up them, generating statistically significant results that Biosphere Reserves are protected areas that help us understand how to manage and govern socioecological systems sustainably.


Assuntos
Biodiversidade , Ecossistema , Mudança Climática , Aquecimento Global , Desenvolvimento Sustentável
2.
J Environ Manage ; 345: 118676, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562145

RESUMO

We developed an application model based on the System of Environmental Economic Accounting-Ecosystem Accounting (SEEA-EA) framework, endorsed by the United Nations Statistical Commission in 2021. This model enables mapping condition accounts for forest ecosystems using automated computation. We applied the model nationally in Spain between 2000 and 2015 to test its effectiveness. Our model follows five methodological steps to generate forest condition accounts: (i) definition and spatial delimitation of forest ecosystem types; (ii) selection of variables using the ecosystem condition typology encompassing physical, chemical, compositional, structural, functional, and landscape characteristics; (iii) establishment of reference levels, including lower (collapse) and upper (high ecosystem integrity) thresholds; (iv) aggregation of variables into condition index; and (v) calculation of a single condition index by rescaling the aggregated indicators between 0 and 1. The results obtained from the model provide valuable insights into the status and trends of individual condition indicators, as well as aggregated condition index values for forest ecosystems, in a spatially explicit manner. Overall, the condition of the forest ecosystems in Spain showed a slight increase, from 0.56 in 2000 to 0.58 in 2015. However, distinct trends were observed for each ecosystem type. For example, mixed Alpine and Macaronesia forests exhibited a significant improvement, while the continental Mediterranean coniferous forests did not show any change. This innovative approach to monitoring forest condition accounts has important potential applications in policy and decision-making processes. It can contribute to effective evidence-based nature conservation, ecosystem service management, and identifying restoration areas.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Florestas , Espanha , Políticas
3.
Sci Total Environ ; 815: 152903, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998742

RESUMO

Assessing the spatial and temporal changes in ecosystems is essential to account for natural capital contribution to human well-being. However, various methods to quantify these changes challenge the development of reliable values which can be integrated into national statistical accounts. Following the international system of environmental-economic accounting framework, which recently adopts an ecosystem accounting standard. We present a novel approach to develop an ecosystem extent account from existing ecosystem classifications. This study shows the spatial and statistical extent account of 26 ecosystems (i.e. forests, grasslands, croplands, and urban, among others) between 1970 and 2015 at the national scale. Extent accounts were developed at a resolution of 25 m and provided reliable information on how ecosystem types have changed over time in Spain. Our results reflect three main patterns in the extension account: (i) an increase in forest ecosystems, (ii) a considerable decrease in agroecosystems (especially annual croplands), and (iii) substantial development of urban areas. To the best of our knowledge, this method is the first attempt to develop a robust methodology to measure the extent of ecosystems at the national level. The proposed approach is crucial for a strong knowledge of ecosystem dynamics and their implications for ecosystem conditions and services at a national level. This has potential applications in urban planning, green infrastructure development, and multiple uses for territory management and policies, integrating natural capital into official statistics and mainstreaming ecosystems into national-level planning and monitoring processes.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Florestas , Humanos , Espanha
4.
Artigo em Inglês | MEDLINE | ID: mdl-34831741

RESUMO

Among the numerous natural hazards, landslides are one of the greatest, as they can cause enormous loss of life and property, and affect the natural ecosystem and their services. Landslides are disasters that cause damage to anthropic activities and innumerable loss of human life, globally. The landslide risk assessed by the integration of susceptibility and vulnerability maps has recently become a manner of studying sites prone to landslide events and managing these regions well. Developing countries, where the impact of landslides is frequent, need risk assessment tools that enable them to address these disasters, starting with their prevention, with free spatial data and appropriate models. Our study shows a heuristic risk model by integrating a susceptibility map made by AutoML and a vulnerability one that is made considering ecological vulnerability and socio-economic vulnerability. The input data used in the State of Guerrero (México) approach uses spatial data, such as remote sensing, or official Mexican databases. This aspect makes this work adaptable to other parts of the world because the cost is low, and the frequency adaptation is high. Our results show a great difference between the distribution of vulnerability and susceptibility zones in the study area, and even between the socio-economic and ecological vulnerabilities. For instance, the highest ecological vulnerability is in the mountainous zone in Guerrero, and the highest socio-economic vulnerability values are found around settlements and roads. Therefore, the final risk assessment map is an integrated index that considers susceptibility and vulnerability and would be a good first attempt to challenge landslide disasters.


Assuntos
Desastres , Deslizamentos de Terra , Ecossistema , Sistemas de Informação Geográfica , Humanos , Medição de Risco
5.
Artigo em Inglês | MEDLINE | ID: mdl-34682717

RESUMO

The risks associated with landslides are increasing the personal losses and material damages in more and more areas of the world. These natural disasters are related to geological and extreme meteorological phenomena (e.g., earthquakes, hurricanes) occurring in regions that have already suffered similar previous natural catastrophes. Therefore, to effectively mitigate the landslide risks, new methodologies must better identify and understand all these landslide hazards through proper management. Within these methodologies, those based on assessing the landslide susceptibility increase the predictability of the areas where one of these disasters is most likely to occur. In the last years, much research has used machine learning algorithms to assess susceptibility using different sources of information, such as remote sensing data, spatial databases, or geological catalogues. This study presents the first attempt to develop a methodology based on an automatic machine learning (AutoML) framework. These frameworks are intended to facilitate the development of machine learning models, with the aim to enable researchers focus on data analysis. The area to test/validate this study is the center and southern region of Guerrero (Mexico), where we compare the performance of 16 machine learning algorithms. The best result achieved is the extra trees with an area under the curve (AUC) of 0.983. This methodology yields better results than other similar methods because using an AutoML framework allows to focus on the treatment of the data, to better understand input variables and to acquire greater knowledge about the processes involved in the landslides.


Assuntos
Desastres , Deslizamentos de Terra , Sistemas de Informação Geográfica , Geologia , Aprendizado de Máquina
6.
J Arid Environ ; 157: 116-123, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30174356

RESUMO

Monitoring ecosystem functioning is a significant step towards detecting changes in ecosystem attributes that could be linked to land degradation and desertification in drylands worldwide. Remote sensing-based vegetation indices (VIs) and land surface albedo are two favorite indicators to monitor desertification process due to their close relationship with ecosystem status and to their increasing applicability over multiple spatiotemporal scales. While VIs are routinely used to monitor ecosystem attributes and functions such as vegetation cover and productivity, no previous study has evaluated whether remote sensing-measured albedo is related to the simultaneous provision of multiple ecosystem functions (multifunctionality) in global drylands. In this study, we evaluated the correlation of six albedo metrics (shortwave black-sky albedo, shortwave white-sky albedo, visible black-sky albedo, visible white-sky albedo, near-infrared black-sky albedo and near-infrared white-sky albedo) and two VIs (Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI)) with multifunctionality indices related to carbon, nitrogen and phosphorus cycling measured in 61 dryland ecosystems from all continents except Antarctica. We found a negative relationship between land surface albedo and multifunctionality. Black-sky albedo had a stronger correlation with multifunctionality than white-sky albedo. Visible black-sky albedo showed the strongest correlation with multifunctionality (MUL, -0.314), as well as with functions related to carbon (CCY, -0.216) and nitrogen cycling (NCY, -0.410), while near-infrared (-0.339) and shortwave black-sky albedo (-0.325) showed stronger correlations with functions related to phosphorus cycling (PCY) than visible black-sky albedo (-0.233) did. VIs showed significant positive correlations with MUL, CCY, and NCY, and the magnitudes were higher than those observed between albedo metrics and the multifunctionality indices. However, VIs were not correlated with PCY, which had significant correlations with both shortwave and near-infrared albedo. Though the magnitudes of the correlations observed were not high, which may result from the wide variability in soil and vegetation types in our dataset, our findings indicate that remotely sensed albedo correlates to multifunctionality, which has been linked to alternative states in global drylands. As such, albedo has the potential to monitor changes in dryland ecosystem functioning, which can inform us about the onset of desertification in these areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...