Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Protein Expr Purif ; 218: 106458, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423156

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease, a global public health problem. New therapeutic drugs and biologics are needed. The TSA-1 recombinant protein of T. cruzi is one such promising antigen for developing a therapeutic vaccine. However, it is overexpressed in E. coli as inclusion bodies, requiring an additional refolding step. As an alternative, in this study, we propose the endogenous cysteine protease inhibitor chagasin as a molecular scaffold to generate chimeric proteins. These proteins will contain combinations of two of the five conserved epitopes (E1 to E5) of TSA-1 in the L4 and L6 chagasin loops. Twenty chimeras (Q1-Q20) were designed, and their solubility was predicted using bioinformatics tools. Nine chimeras with different degrees of solubility were selected and expressed in E. coli BL21 (DE3). Western blot assays with anti-6x-His and anti-chagasin antibodies confirmed the expression of soluble recombinant chimeras. Both theoretically and experimentally, the Q12 (E5-E3) chimera was the most soluble, and the Q20 (E4-E5) the most insoluble protein. Q4 (E5-E1) and Q8 (E5-E2) chimeras were classified as proteins with medium solubility that exhibited the highest yield in the soluble fraction. Notably, Q4 has a yield of 239 mg/L, well above the yield of recombinant chagasin (16.5 mg/L) expressed in a soluble form. The expression of the Q4 chimera was scaled up to a 7 L fermenter obtaining a yield of 490 mg/L. These data show that chagasin can serve as a molecular scaffold for the expression of TSA-1 epitopes in the form of soluble chimeras.


Assuntos
Proteínas de Membrana , Trypanosoma cruzi , Trypanosoma cruzi/genética , Cisteína Endopeptidases/metabolismo , Epitopos/genética , Epitopos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Pathogens ; 13(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38392857

RESUMO

Trichomonas vaginalis is the causative agent of trichomoniasis, the most prevalent nonviral, neglected sexually transmitted disease worldwide. T. vaginalis has one of the largest degradomes among unicellular parasites. Cysteine peptidases (CPs) are the most abundant peptidases, constituting 50% of the degradome. Some CPs are virulence factors recognized by antibodies in trichomoniasis patient sera, and a few are found in vaginal secretions that show fluctuations in glucose concentrations during infection. The CPs of clan CD in T. vaginalis include 10 genes encoding legumain-like peptidases of the C13 family. TvLEGU-2 is one of them and has been identified in multiple proteomes, including the immunoproteome obtained with Tv (+) patient sera. Thus, our goals were to assess the effect of glucose on TvLEGU-2 expression, localization, and in vitro secretion and determine whether TvLEGU-2 is expressed during trichomonal infection. We performed qRT-PCR assays using parasites grown under different glucose conditions. We also generated a specific anti-TvLEGU-2 antibody against a synthetic peptide of the most divergent region of this CP and used it in Western blot (WB) and immunolocalization assays. Additionally, we cloned and expressed the tvlegu-2 gene (TVAG_385340), purified the recombinant TvLEGU-2 protein, and used it as an antigen for immunogenicity assays to test human sera from patients with vaginitis. Our results show that glucose does not affect tvlegu-2 expression but does affect localization in different parasite organelles, such as the plasma membrane, Golgi complex, hydrogenosomes, lysosomes, and secretion vesicles. TvLEGU-2 is secreted in vitro, is present in vaginal secretions, and is immunogenic in sera from Tv (+) patients, suggesting its relevance during trichomonal infection.

3.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194935, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37011833

RESUMO

Trichomonas vaginalis TvCP2 (TVAG_057000) is a cytotoxic cysteine proteinase (CP) expressed under iron-limited conditions. This work aimed to identify one of the mechanisms of tvcp2 gene expression regulation by iron at the posttranscriptional level. We checked tvcp2 mRNA stability under both iron-restricted (IR) and high iron (HI) conditions in the presence of actinomycin D. Greater stability of the tvcp2 mRNA under the IR than in HI conditions was observed, as expected. In silico analysis of the 3' regulatory region showed the presence of two putative polyadenylation signals in the tvcp2 transcript. By 3'-RACE assays, we demonstrated the existence of two isoforms of the tvcp2 mRNA with different 3'-UTR that resulted in more TvCP2 protein under IR than in HI conditions detected by WB assays. Additionally, we searched for homologs of the trichomonad polyadenylation machinery by an in silico analysis in the genome database, TrichDB. 16 genes that encode proteins that could be part of the trichomonad polyadenylation machinery were found. qRT-PCR assays showed that most of these genes were positively regulated by iron. Thus, our results show the presence of alternative polyadenylation as a novel iron posttranscriptional regulatory mechanism in T. vaginalis for the tvcp2 gene expression.


Assuntos
Cisteína Proteases , Trichomonas vaginalis , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Ferro/metabolismo , Poliadenilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Pathogens ; 12(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37111472

RESUMO

Trichomonas vaginalis is one of the most common sexually transmitted parasites in humans. This protozoan has high iron requirements for growth, metabolism, and virulence. However, iron concentrations also differentially modulate T. vaginalis gene expression as in the genes encoding cysteine proteinases TvCP4 and TvCP12. Our goal was to identify the regulatory mechanism mediating the upregulation of tvcp12 under iron-restricted (IR) conditions. Here, we showed by RT-PCR, Western blot, and immunocytochemistry assays that IR conditions increase mRNA stability and amount of TvCP12. RNA electrophoretic mobility shift assay (REMSA), UV cross-linking, and competition assays demonstrated that a non-canonical iron-responsive element (IRE)-like structure at the 3'-untranslated region of the tvcp12 transcript (IRE-tvcp12) specifically binds to human iron regulatory proteins (IRPs) and to atypical RNA-binding cytoplasmic proteins from IR trichomonads, such as HSP70 and α-Actinin 3. These data were confirmed by REMSA supershift and Northwestern blot assays. Thus, our findings show that a positive gene expression regulation under IR conditions occurs at the posttranscriptional level possibly through RNA-protein interactions between atypical RNA-binding proteins and non-canonical IRE-like structures at the 3'-UTR of the transcript by a parallel mechanism to the mammalian IRE/IRP system that can be applied to other iron-regulated genes of T. vaginalis.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36834255

RESUMO

Giardia duodenalis is a significant cause of waterborne and foodborne infections, day-care center outbreaks, and traveler's diarrhea worldwide. In protozoa such as Trichomonas vaginalis and Entamoeba histolytica, iron affects the growth, pathogenicity mechanisms, and expression of virulence genes. One of the proposed iron regulatory mechanisms is at the post-transcriptional level through an IRE/IRP-like (iron responsive element/iron regulatory protein) system. Recently, the expression of many putative giardial virulence factors in the free-iron levels has been reported in subsequent RNAseq experiments; however, the iron regulatory mechanism remains unknown. Thus, this work aimed to determine the effects of iron on the growth, gene expression, and presence of IRE-like structures in G. duodenalis. First, the parasite's growth kinetics at different iron concentrations were studied, and the cell viability was determined. It was observed that the parasite can adapt to an iron range from 7.7 to 500 µM; however, in conditions without iron, it is unable to survive in the culture medium. Additionally, the iron modulation of three genes was determined by RT-PCR assays. The results suggested that Actin, glucosamine-6-phosphate deaminase, and cytochrome b5 mRNA were down-regulated by iron. To investigate the presence of IRE-like structures, in silico analyses were performed for different mRNAs from the Giardia genome database. The Zuker mfold v2.4 web server and theoretical analysis were used to predict the secondary structures of the 91 mRNAs analyzed. Interestingly, the iron-induced downregulation of the genes analyzed corresponds to the location of the stem-loop structures found in their UTR regions. In conclusion, iron modulates the growth and expression of specific genes, likely due to the presence of IRE-like structures in G. duodenalis mRNAs.


Assuntos
Giardia lamblia , Ferro , Humanos , Ferro/metabolismo , RNA Mensageiro , Diarreia , Viagem , Giardia
6.
Genes (Basel) ; 13(6)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35741829

RESUMO

Actin and tubulin proteins from Trichomonas vaginalis are crucial for morphogenesis and mitosis. This parasite has 10 and 11 genes coding bonafide actin and tubulin proteins, respectively. Hence, the goal of this work was to analyze these actin and tubulin genes, their expression at the mRNA and protein levels, and their parasite localization in intercellular interaction and cytokinesis. Representative bonafide actin (tvact1) and tubulin (tvtubα1) genes were cloned into and expressed in Escherichia coli. The recombinant proteins TvACT1r and TvTUBα1r were affinity purified and used as antigens to produce polyclonal antibodies. These antibodies were used in 1DE and 2DE WB and indirect immunofluorescence assays (IFA). By IFA, actin was detected as a ring on the periphery of ameboid, ovoid, and cold-induced cyst-like parasites, on pseudopods of amoeboid parasites, and in cytoplasmic extensions (filopodia) in cell-cell interactions. Tubulin was detected in the axostyle, flagellum, undulating membrane, and paradesmose during mitosis. Paradesmose was observed by IFA mainly during cytokinesis. By scanning electron microscopy, a tubulin-containing nanotubular structure similar to the tunneling nanotubes (TNTs) was also detected in the last stage of cytokinesis. In conclusion, actin and tubulin are multigene families differentially expressed that play important roles in intercellular interactions and cytokinesis.


Assuntos
Trichomonas vaginalis , Tubulina (Proteína) , Actinas/genética , Actinas/metabolismo , Anticorpos , Citocinese/genética , Mitose/genética , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
7.
Arch Pharm (Weinheim) ; 355(6): e2200046, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35332589

RESUMO

The development of new drugs is continuous in the world; currently, saving resources (both economic ones and time) and preventing secondary effects have become a necessity for drug developers. Trichomoniasis is the most common nonviral sexually transmitted infection affecting more than 270 million people around the world. In our research group, we focussed on developing a selective and more effective drug against Trichomonas vaginalis, and we previously reported on a compound, called A4, which had a trichomonacidal effect. Later, we determined another compound, called D4, which also had a trichomonacidal effect together with favorable toxicity results. Both A4 and D4 are directed at the enzyme triosephosphate isomerase. Thus, we made combinations between the two compounds, in which we determined a synergistic effect against T. vaginalis, determining the IC50 and the toxicity of the best relationship to obtain the trichomonacidal effect. With these results, we can propose a combination of compounds that represents a promising alternative for the development of a new therapeutic strategy against trichomoniasis.


Assuntos
Infecções Sexualmente Transmissíveis , Tricomoníase , Trichomonas vaginalis , Humanos , Infecções Sexualmente Transmissíveis/complicações , Infecções Sexualmente Transmissíveis/tratamento farmacológico , Relação Estrutura-Atividade , Tricomoníase/complicações , Tricomoníase/tratamento farmacológico , Triose-Fosfato Isomerase/farmacologia
8.
Mol Biochem Parasitol ; 246: 111413, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34537286

RESUMO

Trichomoniasis is the most common non-viral sexually transmitted infection, caused by the protozoan parasite Trichomonas vaginalis, affecting millions of people worldwide. The main treatment against trichomoniasis is metronidazole and other nitroimidazole derivatives, but up to twenty percent of clinical cases of trichomoniasis are resistant to these drugs. In this study, we used high-performance virtual screening to search for molecules that specifically bind to the protein, triosephosphate isomerase from T. vaginalis (TvTIM). By in silico molecular docking analysis, we selected six compounds from a chemical library of almost 500,000 compounds. While none of the six inhibited the enzymatic activity of recombinant triosephosphate isomerase isoforms, one compound (A4; 3,3'-{[4-(4-morpholinyl)phenyl]methylene}bis(4- hydroxy-2H-chromen-2-one) altered their fluorescence emission spectra, suggesting that this chemical might interfere in an important non-glycolytic function of TvTIM. In vitro assays demonstrate that A4 is not cytotoxic but does have trichomonacidal impact on T. vaginalis cultures. With these results, we propose this compound as a potential drug with a new therapeutic target against Trichomonas vaginalis.


Assuntos
Tricomoníase , Trichomonas vaginalis , Humanos , Metronidazol/farmacologia , Simulação de Acoplamento Molecular , Tricomoníase/tratamento farmacológico , Tricomoníase/parasitologia , Trichomonas vaginalis/genética , Triose-Fosfato Isomerase/genética
9.
Parasitology ; 147(7): 760-774, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32174285

RESUMO

Trichomonas vaginalis (Tv) induces host cell damage through cysteine proteinases (CPs) modulated by iron. An immunoproteomic analysis showed that trichomoniasis patient sera recognize various CPs, also some of them are present in vaginal washes (VWs). Thus, the goal of this work was to determine whether TvCP2 is expressed during infection and to assess the effect of iron on TvCP2 expression, localization and contribution to in vitro cellular damage. Western-blotting (WB) assays using TvCP2r and vaginitis patient serum samples showed that 6/9 Tv (+) but none of the Tv (-) patient sera recognized TvCP2r. WB using an anti-TvCP2r antibody and VWs from the same patients showed that in all of the Tv (+) but none of the Tv (-) VWs, the anti-TvCP2r antibody detected a 27 kDa protein band that corresponded to the mature TvCP2, which was confirmed by mass spectrometry analysis. Iron decreased the amount of TvCP2 mRNA and the protein localized on the parasite surface and cytoplasmic vesicles concomitant with the cytotoxic effect of TvCP2 on HeLa cells. Parasites pretreated with the anti-TvCP2r antibody also showed reduced levels of cytotoxicity and apoptosis induction in HeLa cell monolayers. In conclusion, these results show that TvCP2 is expressed during trichomonal infection and plays an important role in the in vitro HeLa cell cytotoxic damage under iron-restricted conditions.


Assuntos
Cisteína Proteases/metabolismo , Ferro/administração & dosagem , Proteínas de Protozoários/metabolismo , Trichomonas vaginalis/efeitos dos fármacos , Vagina/parasitologia , Secreções Corporais/parasitologia , Feminino , Humanos , Trichomonas vaginalis/enzimologia
10.
Biomed Res Int ; 2019: 1425281, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058184

RESUMO

Leishmania major, a protozoan parasite that diverged early from the main eukaryotic lineage, exhibits unusual mechanisms of gene expression. Little is known in this organism about the transcription factors involved in the synthesis of tRNA, 5S rRNA, and snRNAs, transcribed by RNA Polymerase III (Pol III). Here we identify and characterize the TFIIIB subunit Bdp1 in L. major (LmBdp1). Bdp1 plays key roles in Pol III transcription initiation in other organisms, as it participates in Pol III recruitment and promoter opening. In silico analysis showed that LmBdp1 contains the typical extended SANT domain as well as other Bdp1 conserved regions. Nevertheless, LmBdp1 also displays distinctive features, including the presence of only one aromatic residue in the N-linker region. We were not able to produce null mutants of LmBdp1 by homologous recombination, as the obtained double replacement cell line contained an extra copy of LmBdp1, indicating that LmBdp1 is essential for the viability of L. major promastigotes. Notably, the mutant cell line showed reduced levels of the LmBdp1 protein, and its growth was significantly decreased in relation to wild-type cells. Nuclear run-on assays demonstrated that Pol III transcription was affected in the mutant cell line, and ChIP experiments showed that LmBdp1 binds to 5S rRNA, tRNA, and snRNA genes. Thus, our results indicate that LmBdp1 is an essential protein required for Pol III transcription in L. major.


Assuntos
Leishmania major/genética , RNA Polimerase III/genética , Fator de Transcrição TFIIIB/genética , Transcrição Gênica , Simulação por Computador , Sequência Conservada/genética , Regulação da Expressão Gênica/genética , Recombinação Homóloga/genética , Proteínas Mutantes/genética , Regiões Promotoras Genéticas , Domínios Proteicos/genética , Subunidades Proteicas/genética , RNA Ribossômico 5S/biossíntese , RNA Nuclear Pequeno/biossíntese , RNA de Transferência/biossíntese
12.
Parasitology ; 146(9): 1156-1166, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30859930

RESUMO

Trichomonas vaginalis induces cellular damage to the host cells (cytotoxicity) through the proteolytic activity of multiple proteinases of the cysteine type (CPs). Some CPs are modulated by environmental factors such as iron, zinc, polyamines, etc. Thus, the goal of this study was to assess the effect of glucose on T. vaginalis cytotoxicity, proteolytic activity and the particular role of TvCP2 (TVAG_057000) during cellular damage. Cytotoxicity assays showed that glucose-restriction (GR) promotes the highest HeLa cell monolayers destruction (~95%) by trichomonads compared to those grown under high glucose (~44%) condition. Zymography and Western blot using different primary antibodies showed that GR increased the proteolytic activity, amount and secretion of certain CPs, including TvCP2. We further characterized the effect of glucose on TvCP2. TvCP2 increases in GR, localized in vesicles close to the plasma membrane and on the surface of T. vaginalis. Furthermore, pretreatment of GR-trichomonads with an anti-TvCP2r polyclonal antibody specifically reduced the levels of cytotoxicity and apoptosis induction to HeLa cells in a concentration-dependent manner. In conclusion, our data show that GR, as a nutritional stress condition, promotes trichomonal cytotoxicity to the host cells, increases trichomonad proteolytic activity and amount of CPs, such as TvCP2 involved in cellular damage.


Assuntos
Apoptose , Cisteína Endopeptidases/metabolismo , Glucose/metabolismo , Trichomonas vaginalis/enzimologia , Trichomonas vaginalis/patogenicidade , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Glucose/farmacologia , Células HeLa , Interações Hospedeiro-Parasita , Humanos , Fenômenos Fisiológicos da Nutrição , Proteólise , Proteínas de Protozoários/metabolismo
13.
J Eukaryot Microbiol ; 66(4): 654-669, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30620421

RESUMO

Autophagy is an adaptive response for cell survival in which cytoplasmic components and organelles are degraded in bulk under normal and stress conditions. Trichomonas vaginalis is a parasite highly adaptable to stress conditions such as iron (IR) and glucose restriction (GR). Autophagy can be traced by detecting a key autophagy protein (Atg8) anchored to the autophagosome membrane by a lipid moiety. Our goal was to perform a morphological and cellular study of autophagy in T. vaginalis under GR, IR, and Rapamycin (Rapa) treatment using TvAtg8 as a putative autophagy marker. We cloned tvatg8a and tvatg8b and expressed and purified rTvAtg8a and rTvAtg8b to produce specific polyclonal antibodies. Autophagy vesicles were detected by indirect immunofluorescence assays and confirmed by ultrastructural analysis. The biogenesis of autophagosomes was detected, showing intact cytosolic cargo. TvAtg8 was detected as puncta signal with the anti-rTvAtg8b antibody that recognized soluble and lipid-associated TvAtg8b by Western blot assays in lysates from stress-inducing conditions. The TvAtg8b signal co-localized with the CytoID and lysotracker labeling (autolysosomes) that accumulated after E-64d treatment in GR parasites. Our data suggest that autophagy induced by starvation in T. vaginalis results in the formation of autophagosomes for which TvAtg8b could be a putative autophagy marker.


Assuntos
Autofagossomos/fisiologia , Macroautofagia/efeitos dos fármacos , Biogênese de Organelas , Trichomonas vaginalis/fisiologia , Anti-Infecciosos/administração & dosagem , Glucose/deficiência , Deficiências de Ferro , Sirolimo/administração & dosagem
14.
Parasitol Res ; 118(1): 289-306, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30506516

RESUMO

Toxoplasma gondii can infect all nucleated cells from warm-blooded organisms. After infection, Toxoplasma spreads throughout the body and migrates across biological barriers, such as the intestinal and blood-brain barriers, as well as the placenta in pregnant women. The mechanisms for parasite dissemination are still unknown; however, proteases could play a role as a virulence factor. The aim of this study was to detect and to characterize proteases in whole-cell extracts and in excretion/secretion products from tachyzoites of the RH strain isolated from infected mice. Both fractions were analyzed by gelatin and casein zymography and by azocasein degradation. The biochemical characterization of proteases included standardization of optimal conditions for their activation, such as pH, the presence of cofactors, and a reducing agent. In both fractions, we detected at least nine gelatin-degrading metalloproteases in the range of 50 to 290 kDa. The proteases present in the excretion/secretion products were found as soluble proteins and not associated with exosome-like vesicles or other secretory vesicles. Moreover, by using casein zymography, it was possible to detect three serine proteases. Exposure of MDCK cells to excretion/secretion products modified the organization of the cell monolayer, and this effect was reverted after washing thoroughly with PBS and inhibition by metalloprotease and serine protease inhibitors. Proteomic analysis of excretion/secretion products identified 19 proteases. These findings suggest that tachyzoites of a highly virulent strain of Toxoplasma use a battery of proteases to modify the epithelium, probably as a strategy to facilitate their tissue dissemination.


Assuntos
Células Epiteliais/parasitologia , Metaloproteases/metabolismo , Proteínas de Protozoários/metabolismo , Serina Proteases/metabolismo , Toxoplasma/enzimologia , Toxoplasmose/parasitologia , Animais , Feminino , Humanos , Metaloproteases/genética , Camundongos , Gravidez , Proteômica , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
Parasitol Res ; 117(11): 3639-3652, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30191309

RESUMO

A perchloric acid-soluble protein (PSP), named here tv-psp1, was identified in Trichomonas vaginalis. It is expressed under normal culture conditions according to expressed sequence tag (EST) analysis. On the other hand, Tv-PSP1 protein was identified by mass spectrometry with a 40% of identity to human PSP (p14.1). Polyclonal antibodies against recombinant Tv-PSP1 (rTv-PSP1) recognized a single band at 13.5 kDa in total protein parasite extract by SDS-PAGE and a high molecular weight band analyzed by native PAGE. Structural analysis of Tv-PSP1, using dynamic light scattering, size exclusion chromatography, and circular dichroism spectroscopy, showed a trimeric structure stable at 7 M urea with 38% α-helix and 14% ß-sheet in solution and a molecular weight of 40.5 kD. Tv-PSP1 models were used to perform dynamic simulations over 100 ns suggesting a stable homotrimeric structure. Tv-PSP1 was located in the nucleus, cytoplasm, and hydrogenosomes of T. vaginalis, and the in silico analysis by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) showed interactions with RNA binding proteins. The preliminary results of RNA degradation analysis with the recombinant Tv-PSP1 showed RNA partial deterioration suggesting a possible putative ribonuclease function.


Assuntos
Percloratos/metabolismo , Proteínas de Protozoários/análise , Proteínas de Ligação a RNA/análise , Ribonucleases/análise , Trichomonas vaginalis/metabolismo , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Proteínas de Choque Térmico/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Dinâmica Molecular , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/genética , Ribonucleases/genética
16.
Int J Biochem Cell Biol ; 102: 87-100, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30016696

RESUMO

Trichomonas vaginalis is a flagellated protist responsible for human trichomoniasis. T. vaginalis has three genes encoding for endogenous cysteine proteinase (CP) inhibitors, known as trichocystatin-1 through trichocystatin-3 (TC-1, TC-2, and TC-3). These inhibitors belong to the cystatin family. In this study, we characterized trichocystatin-3 (TC-3), an endogenous cysteine proteinase (CP) inhibitor of T. vaginalis. TC-3 possesses a signal peptide in the N-terminus and two putative glycosylation sites (typical of family 2, cystatins) but lacks the PW motif and cysteine residues (typical of family 1, stefins). Native TC-3 was recognized as an ∼18 kDa protein band in a T. vaginalis protein extract. By confocal microscopy, endogenous TC-3 was found in the Golgi complex, cytoplasm, large vesicles, and the plasma membrane. These localizations are consistent with an in silico prediction. In addition, the purified recombinant protein (TC-3r) functions as an inhibitor of cathepsin L CPs, such as human liver cathepsin L and trichomonad CPs, present in a proteinase-resistant extract (PRE). Via a pull-down assay using TC-3r as bait and PRE, we identified several trichomonad CPs targeted by TC-3, primarily TvCP3. These CP-TC-3 interactions occur in vesicles, in the cytoplasm, and on the parasite surface. In addition, TC-3r showed a protective effect on HeLa cell monolayers by inhibiting trichomonad surface CPs involved in cellular damage. Our results show that the endogenous inhibitor TC-3 plays a key role in the regulation of endogenous CP proteolytic activity.


Assuntos
Inibidores de Cisteína Proteinase/metabolismo , Trichomonas vaginalis/metabolismo , Sequência de Aminoácidos , Inibidores de Cisteína Proteinase/química , Citoplasma/metabolismo , Humanos , Modelos Moleculares , Estrutura Secundária de Proteína , Transporte Proteico , Trichomonas vaginalis/citologia
17.
Data Brief ; 18: 404-408, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29896525

RESUMO

The recombinant TvCP4 prepro region (ppTvCP4r) acts as an exogenous inhibitor of cathepsin L-like CPs from Trichomonas vaginalis (Cárdenas-Guerra et al., 2015 [1]). Here, we present the dataset of the trichomonad ppTvCP4r inhibitory effect against the CP proteolytic activities from other microorganisms, such as Naegleria fowleri and Acanthamoeba castellanii free-living amoeba. The proteolytic activity inhibition of total crude extracts (TCEs) of N. fowleri and A. castellanii was determined and recorded using a fluorogenic substrate specific for cathepsin L CPs without or with a ppTvCP4r treatment at different concentrations and pH.

18.
Int J Biochem Cell Biol ; 97: 1-15, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29413946

RESUMO

Trichomonas vaginalis genome encodes ∼440 proteases, six of which are aspartic proteases (APs). However, only one belongs to a clan AA (EC 3.4.23.5), family A1 (pepsin A), cathepsin D-like protease. This AP is encoded by an 1113-bp gene (tv-catd), which translates into a 370-aa residues zymogen of 40.7-kDa and a theoretical pI of 4.6, generating a ∼35 kDa active enzyme after maturation (Tv-CatD). The goal of this study was to identify and analyze the effect of glucose on the expression of Tv-CatD at the transcript and protein levels, subcellular localization, and proteolytic activity. The qRT-PCR assays showed a ∼2-fold increase in tv-catd mRNA under high-glucose (HG) conditions compared to glucose-restriction (GR) conditions. We amplified, cloned, and expressed the tv-catd gene, and purified the recombinant precursor enzyme (Tv-CatDr) to generate a polyclonal antibody (anti-Tv-CatDr). Western blot (WB) and immunolocalization assays showed that glucose increases the amount of Tv-CatD in different subcellular localizations and in in vitro secretions. Additionally, Tv-CatD proteolytic activity was detected in protease-resistant extracts (PREs) using a synthetic fluorogenic peptide specific for cathepsin D/E APs at different pHs and in the presence of AP inhibitors. In a two-dimensional (2-DE) WB analysis of a PRE from parasites grown under GR and HG conditions, an anti-Tv-CatDr antibody detected a 35-kDa protein spot at pI 5.0 identified as the mature Tv-CatD form by mass spectrometry that showed proteolytic activity in 2-DE zymograms copolymerized with hemoglobin under both glucose conditions. Thus, Tv-CatD could be involved in trichomonal hemolysis.


Assuntos
Ácido Aspártico Endopeptidases/química , Glucose/química , Hemoglobinas/química , Proteínas de Protozoários/química , Trichomonas vaginalis/enzimologia , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Glucose/metabolismo , Hemoglobinas/metabolismo , Humanos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato/fisiologia , Trichomonas vaginalis/genética
19.
Mol Biochem Parasitol ; 217: 32-41, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28887063

RESUMO

Trichomonas vaginalis is a protozoan parasite that can adapt to the trichomonicidal Zn2+ concentrations of the male urogenital tract microenvironment. This adaptation is mediated by molecular mechanisms, including proteinase expression, that are regulated by cations such as Zn2+. Herein, we characterized the previously identified 50kDa metalloproteinase aminopeptidase P (M24 family) member TvMP50 as a new Zn2+-mediated parasite virulence factor. Quantitative RT-PCR and indirect immunofluorescence assays corroborated the positive regulation of both mp50 gene expression and native TvMP50 protein overexpression in the cytoplasm and secretion products of parasites grown in the presence of Zn2+. Furthermore, this active metalloproteinase was characterized as a new virulence factor by assaying cytotoxicity toward prostatic DU145 cell monolayers as well as the inhibition of parasite and secreted soluble protein proteolytic activity in the 50kDa proteolytic region by the specific metalloproteinase inhibitor 1,10-phenanthroline and the chelating agents EDTA and EGTA. Parasite and secreted soluble protein cytotoxicity toward DU145 cells were reduced by treatment with an α-rTvMP50 polyclonal antibody. Our results show that the metalloproteinase TvMP50 is a new virulence factor modulated by Zn2+, which is present during male trichomoniasis, possibly explaining T. vaginalis survival even within the adverse conditions of the male urogenital microenvironment.


Assuntos
Metaloproteases/metabolismo , Proteínas de Protozoários/metabolismo , Trichomonas vaginalis/enzimologia , Fatores de Virulência/metabolismo , Zinco/metabolismo , Linhagem Celular , Células Cultivadas , Cromatografia Líquida , Feminino , Expressão Gênica , Humanos , Masculino , Metaloproteases/química , Metaloproteases/genética , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Espectrometria de Massas em Tandem , Vaginite por Trichomonas/parasitologia , Trichomonas vaginalis/genética , Trichomonas vaginalis/patogenicidade , Fatores de Virulência/química , Fatores de Virulência/genética
20.
Curr Pharm Des ; 23(23): 3359-3366, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28671057

RESUMO

Polyamines are essential for many biological processes in all organisms. Here we show a current landscape of studies and strategies implemented for the study of polyamine metabolism, as well as molecular aspects that implicate the role of key enzymes, transport proteins, inhibitors, and the study of novel molecules as potential therapeutic targets. This review focused on the synthesis, interconversion and function of these molecules in Trichomonas vaginalis, a common sexually transmitted parasite of humans.


Assuntos
Antiparasitários/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Poliaminas/metabolismo , Trichomonas vaginalis/efeitos dos fármacos , Trichomonas vaginalis/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Feminino , Humanos , Poliaminas/antagonistas & inibidores , Espermidina/metabolismo , Espermina/metabolismo , Vaginite por Trichomonas/tratamento farmacológico , Vaginite por Trichomonas/metabolismo , Trichomonas vaginalis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...