Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(44): 41004-41021, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970044

RESUMO

The use of different types of chemicals in upstream oilfield operations is critical for optimizing the different operations involved in hydrocarbon exploration and production. Surfactants are a type chemical that are applied in various upstream operations, such as drilling, fracturing, and enhanced oil recovery. However, due to their nonbiodegradability and toxicity, the use of synthetic surfactants has raised environmental concerns. Natural surfactants have emerged because of the hunt for sustainable and environmentally suitable substitutes. This Review discusses the role of natural surfactants in upstream operations as well as their benefits and drawbacks. The Review discusses the basic characteristics of surfactants, their classification, and the variables that affect their performance. Finally, the Review examines the possible applications of natural surfactants in the upstream oil sector and identifies areas that require further research.

2.
Molecules ; 28(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37764461

RESUMO

Alkaline-surfactant-polymer (ASP) flooding, a recognized method for oil recovery, encounters limited use due to its expense. In addition, ASP's best composition and injection sequence still remains uncertain today. This study explores conventional ASP flooding using PT SPR Langgak's special surfactants, simulating Langgak oilfield conditions in Sumatra, Indonesia. By comparing the outcomes of this flooding technique with that of starch-assisted ASP performed in another study, the benefits of adding starch nanoparticles to flooding are evident. Nano-starch ASP increased oil recovery by 18.37%, 10.76%, and 10.37% for the three configurations investigated in this study. Water flooding preceded ASP flooding, and flooding operations were carried out at 60 °C. This study employed sodium hydroxide (NaOH), sodium carbonate (Na2CO3), and specialized surfactants from PT SPR. The adopted polymer is solely hydrolyzed polyacrylamide (HPAM) at 2000 ppm. Starch nanoparticles underwent comprehensive characterization and focused more on charge stability. Purple yam nanoparticles (PYNPs) exhibited remarkable stability at -36.33 mV, unlike cassava starch nanoparticles (CSNPs') at -10.68 mV and HPAM's at -27.13 mV. Surface properties affect interactions with fluids and rocks. Crystallinity, a crucial characterization, was assessed using Origin software 2019b. CSNPs showed 24.15% crystallinity, surpassing PYNPs' 20.68%. Higher crystallinity benefits CSNPs' thermal stability. The amorphous behavior found in PYNPs makes them less suitable if applied in harsh reservoirs. This research correlated with prior findings, reinforcing starch nanoparticles' role in enhancing oil recovery. In summary, this study highlighted conventional ASP flooding using HPAM as the sole polymer and compared it with three formations that used two starch nanoparticles included with HPAM, assessing their impact on charge stability, crystallinity, and recovery rate to emphasize their importance in the oil recovery industry. Starch nanoparticles' benefits and limitations guided further investigation in this study.

3.
Molecules ; 28(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570740

RESUMO

This study aimed to address the challenges faced by mature oilfields in extracting substantial oil quantities. It focused on improving the efficiency of alkaline-surfactant-polymer (ASP) flooding technique, which is a proven tertiary recovery technology, to overcome scaling issues and other hindrances in its large-scale implementation. Appropriate materials and their suitable concentrations were selected to enhance the ASP flooding technique. Special surfactants from Indonesia were introduced to improve the interfacial tension reduction and wettability alteration. Reservoir rock model that resembling Langgak oilfield in Sumatra was utilized, and low-salinity water was employed to mimic the oilfield conditions. Starches derived from cassava nanoparticles (CSNPs) and purple yam nanoparticles (PYNPs) were combined separately with conventional hydrolyzed polyacrylamide (HPAM) polymer to enhance its performance. Sodium hydroxide and sodium carbonate were used as alkaline in final ASP formula. It was demonstrated from this research that only two combinations of ASP formulations have led to improved oil recovery. One combination utilizing PYNPs resulted in 39.17% progressive recovery, while the other combination incorporating CSNPs achieved 35% incremental oil recovery. The ASP combination that resulted in recovery rate of 39.17% was composed of sodium hydroxide (NaOH) at a concentration of 1.28 wt.%, PSC EOR 2.2 (0.98 wt.%), and a combined polymer consisting of HPAM (0.2 wt.%) and PYNPs nano-starch (0.6 wt.%). The second combination led to 35% recovery rate and involved NaOH also at concentration 1.28 wt.%, PSC HOMF (0.63 wt.%), and a combined polymer comprising from HPAM (0.2 wt.%) and CSNPs nano-starch (0.8 wt.%). These findings of this study highlighted the potential of this modified ASP flooding to enhance oil recovery in mature oilfields, thereby offering valuable insights for oil industry.

4.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375169

RESUMO

Significant amounts of oil remain in the reservoir after primary and secondary operations, and to recover the remaining oil, enhanced oil recovery (EOR) can be applied as one of the feasible options remaining nowadays. In this study, new nano-polymeric materials have been prepared from purple yam and cassava starches. The yield of purple yam nanoparticles (PYNPs) was 85%, and that of cassava nanoparticles (CSNPs) was 90.53%. Synthesized materials were characterized through particle size distribution (PSA), Zeta potential distribution, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The performance of PYNPs in recovering oil was better than CSNPs, as found from the recovery experiments. Zeta potential distribution results confirmed the stability of PYNPs over CSNPs (-36.3 mV for PYNPs and -10.7 mV for CSNPs). The optimum concentration for these nanoparticles has been found from interfacial tension measurements and rheological properties, and it was 0.60 wt.% for PYNPs and 0.80 wt.% for CSNPs. A more incremental recovery (33.46%) was achieved for the polymer that contained PYNPs in comparison to the other nano-polymer (31.3%). This paves the way for a new technology for polymer flooding that may replace the conventional method, which depends on partially hydrolyzed polyacrylamide (HPAM).

5.
ACS Omega ; 8(9): 8703-8711, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36910982

RESUMO

The effectiveness of CO2-enhanced oil recovery (EOR) is strongly dependent on the CO2-oil minimum miscible pressure (MMP) value, which can be estimated using various methods. In this study, interfacial tension (IFT) and slim-tube tests were used to estimate the MMP value. Experimental results indicated that the IFT test had a higher MMP value than the slim-tube test. Particularly, the outcomes of IFT and the slim-tube tests differed slightly, i.e., 0.7% and 4.3% at 60 and 66 °C, respectively. Furthermore, the current work also compares MMP data gathered using visual observation and equation of state (EOS) simulation. The MMP estimated by EOS is higher but close to the IFT and slim-tube recovery factor method, where all results are within the 1650-1700 psi and 1700-1800 psi visual observation ranges at 60 and 66 °C, respectively. However, MMP deviations concerning the slim-tube test and EOS were consistent at different temperatures. This study offers an alternative to estimate and evaluate CO2-oil MMP for EOR applications accurately and efficiently.

6.
Polymers (Basel) ; 15(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36987308

RESUMO

Polypyrrole (PPy) nanoparticles are reliable conducting polymers with many industrial applications. Nevertheless, owing to disadvantages in structure and morphology, producing PPy with high electrical conductivity is challenging. In this study, a chemical oxidative polymerization-assisted ultra-sonication method was used to synthesize PPy with high conductivity. The influence of critical sonication parameters such as time and power on the structure, morphology, and electrical properties was examined using response surface methodology. Various analyses such as SEM, FTIR, DSC, and TGA were performed on the PPy. An R2 value of 0.8699 from the regression analysis suggested a fine correlation between the observed and predicted values of PPy conductivity. Using response surface plots and contour line diagrams, the optimum sonication time and sonication power were found to be 17 min and 24 W, respectively, generating a maximum conductivity of 2.334 S/cm. Meanwhile, the model predicted 2.249 S/cm conductivity, indicating successful alignment with the experimental data and incurring marginal error. SEM results demonstrated that the morphology of the particles was almost spherical, whereas the FTIR spectra indicated the presence of certain functional groups in the PPy. The obtained PPy with high conductivity can be a promising conducting material with various applications, such as in supercapacitors, sensors, and other smart electronic devices.

7.
Nanomaterials (Basel) ; 13(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36678058

RESUMO

The use of fluidization assistance can greatly enhance the fluidization hydrodynamics of powders that exhibit poor fluidization behavior. Compared to other assistance techniques, pulsed flow assistance is a promising technique for improving conventional fluidization because of its energy efficiency and ease of process implementation. However, the inlet flow configuration of pulsed flow can significantly affect the bed hydrodynamics. In this study, the conventional single drainage (SD) flow strategy was modified to purge the primary flow during the non-flow period of the pulse to eliminate pressure buildup in the inlet flow line while providing a second drainage path to the residual gas. The bed dynamics for both cases, namely, single drainage (SD) and modified double drainage (MDD), were carefully monitored by recording the overall and local pressure drop transients in different bed regions at two widely different pulsation frequencies of 0.05 and 0.25 Hz. The MDD strategy led to substantially faster bed dynamics and greater frictional pressure drop in lower bed regions with significantly mitigated segregation behavior. The spectral analysis of the local and global pressure transient data in the frequency domain revealed a pronounced difference between the two flow strategies. The application of the MDD inlet flow strategy eliminated the disturbances from the pulsed fluidized bed irrespective of the pulsation frequency.

8.
Nanomaterials (Basel) ; 12(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35745358

RESUMO

Bed collapse experiments provide vital information about fluidized bed hydrodynamics. In this study, the region-wise bed collapse dynamics of glass beads, titania (TiO2), and hydrophilic nanosilica (SiO2) particles with widely different voidages (ε) of 0.38, 0.80, and 0.98, respectively, were carefully investigated. These particles belonged to different Geldart groups and exhibited varied hysteresis phenomena and fluidization indices. The local collapse dynamics in the lower, lower-middle, upper-middle, and upper regions were carefully monitored in addition to the distributor pressure drop to obtain greater insight into the deaeration behavior of the bed. While the collapse dynamics of glass beads revealed high bed homogeneity, the upper middle region controlled the collapse process in the case of titania due to the size-based segregation along the bed height. The segregation behavior was very strong for nanosilica, with the slow settling fine agglomerates in the upper bed regions controlling its collapse dynamics. The collapse time of the upper region was 25 times slower than that of the lower region containing mainly large agglomerates. The spectral analysis confirmed the trend that was observed in the pressure transients. The clear presence of high frequency events at 20 and 40 Hz was observed in the nanosilica due to agglomerate movements. The residual air exiting the plenum was strongly affected by the bed voidage, being lowest for the nanosilica and highest for the glass beads.

9.
Nanomaterials (Basel) ; 12(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35564218

RESUMO

The commercial utilization of bulk nanosilica is widespread in concrete, rubber and plastics, cosmetics and agriculture-related applications, and the market of this product is projected to exceed USD 5 billion by 2025. In this investigation, the local dynamics of a nanosilica bed, excited with sinusoidal acoustic waves of different frequencies, were carefully monitored using sensitive pressure transducers to obtain detailed insights into the effectiveness of sound waves as a means of energy transport inside the bed. The evolution of wave patterns and their frequency and power distributions were examined both in the freeboard and in the static bed. These results were compared with those obtained by using an empty column. The acoustic frequency strongly affected the signal power. The average power of the acoustic signal in the freeboard region was twice higher than that for the empty column, whereas the same (power) ratio decreased to approximately 0.03 inside the bed for 300 Hz. However, at 360 Hz, the power ratio was substantially lower at 0.24 and 0.002 for the freeboard and the granular bed, respectively, thereby indicating tremendous attenuation of acoustic waves in the granular media at all frequencies.

10.
Appl Biochem Biotechnol ; 194(8): 3779-3801, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35488954

RESUMO

Nanostarch is unique in that it is highly soluble, thermally stable, non-toxic and inexpensive. Hence, it is utilized in numerous well-established applications, including drug delivery, cosmetics, textiles, foods, and enhanced oil recovery (EOR). These applications take advantage of the special functions that can be achieved through modifications to the structure and properties of native starch. The most common method for the preparation of nanostarch with a relatively higher crystallinity and stability is acid hydrolysis. Technically, the properties of nanostarch are highly dependent on several factors during the hydrolysis process, such as the acid, concentration of acid, reaction time, reaction temperature, and source of starch. The production of nanostarch with desired properties requires a detailed understanding on each of the factors as they are inevitably affected the physical and chemical properties of nanostarch. Hence, it is vital to incorporate optimization technique into the production process to achieve the full potential of nanostarch. Therefore, the current review comprehensively elaborates on the factors that affect acid hydrolysis as well as the optimization techniques used in the preparation of nanostarch.


Assuntos
Nanopartículas , Amido , Ácidos/química , Hidrólise , Nanopartículas/química , Amido/química , Temperatura
11.
Int J Biol Macromol ; 148: 1251-1271, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760018

RESUMO

Ascorbic acid was used for the first time to synthesize crystalline starch nanoparticles (CSNP). The physical properties of the CSNP were investigated. Rheological properties of the crystalline starch nanofluid (CSNF) were compared with native cassava starch (CS) and commercial polymer xanthan. Interfacial properties of the CSNF at the interface of oil and water (O/W) were investigated at different concentrations and temperatures. Wettability alteration efficiency of CSNF on oil-wet sandstone surface was investigated using the sessile drop method. Core flooding experiment was conducted at reservoir conditions. The methods were effective in producing spherical and polygonal nanoparticles with a mean diameter of 100 nm and increased in crystallinity of 7%. Viscosity increased with increase in surface area and temperature of the CSNF compared to a decrease in viscosity as the temperature increases for xanthan. Interfacial tension (IFT) decreased with increase in concentration of CSNF, electrolyte and temperature. The results show that CSNF can change the wettability of sandstone at low concentration, high salinity and elevated temperature. Pressure drops data shows stability of CSNF at 120 °C. The formation of oil bank was enough to increase oil recovery by 23%.


Assuntos
Ácidos/química , Nanopartículas/química , Óleos/química , Amido/química , Ondas Ultrassônicas , Fenômenos Químicos , Hidrólise , Estrutura Molecular , Tamanho da Partícula , Salinidade , Análise Espectral , Temperatura , Viscosidade
12.
PLoS One ; 14(9): e0220778, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31560699

RESUMO

Ascorbic acid was used for the first time to synthesize cellulose nanoparticles (CNP) extracted from okra mucilage. The physical properties of the CNP including their size distribution, and crystalline structures were investigated. The rheological properties of the cellulose nanofluid (CNF) were compared with the bulk okra mucilage and commercial polymer xanthan. The interfacial properties of the CNF at the interface of oil-water (O/W) system were investigated at different concentrations and temperatures. The effects of the interaction between the electrolyte and ultrasonic were determined. Core flooding experiment was conducted at reservoir condition to justify the effect of the flow behaviour and disperse phase behaviour of CNF on additional oil recovery. The performance of the CNF was compared to conventional EOR chemical. The combined method of ultrasonic, weak-acid hydrolysis and nanoprecipitation were effective in producing spherical and polygonal nanoparticles with a mean diameter of 100 nm, increased yield of 51% and preserved crystallinity respectively. The zeta potential result shows that the CNF was stable, and the surface charge signifies long term stability of the fluid when injected into oil field reservoirs. The CNF, okra and xanthan exhibited shear-thinning and pseudoplastic behaviour. The IFT decreased with increase in concentration of CNF, electrolyte and temperature. The pressure drop data confirmed the stability of CNF at 120°C and the formation of oil bank was enough to increase the oil recovery by 20%. CNF was found to be very effective in mobilizing residual oil at high-temperature high-pressure (HTHP) reservoir condition. The energy and cost estimations have shown that investing in ultrasonic-assisted weak-acid hydrolysis is easier, cost-effective, and can reduce energy consumption making the method economically advantageous compared to conventional methods.


Assuntos
Celulose/química , Nanopartículas/química , Óleos/química , Reologia , Modelos Teóricos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Fenômenos Físicos , Polímeros/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...