Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 89(7): 1879-1890, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619909

RESUMO

This study investigated the treatment of wastewater from tomato paste (TP) production using electrocoagulation (EC) and electrooxidation (EO). The effectiveness of water recovery from the pretreated water was then investigated using the membrane process. For this purpose, the effects of independent control variables, including electrode type (aluminum, iron, graphite, and stainless steel), current density (25-75 A/m2), and electrolysis time (15-120 min) on chemical oxygen demand (COD) and color removal were investigated. The results showed that 81.0% of COD and 100% of the color removal were achieved by EC at a current density of 75 A/m2, a pH of 6.84 and a reaction time of 120 min aluminum electrodes. In comparison, EO with graphite electrodes achieved 55.6% of COD and 100% of the color removal under similar conditions. The operating cost was calculated to be in the range of $0.56-30.62/m3. Overall, the results indicate that EO with graphite electrodes is a promising pretreatment process for the removal of various organics. In the membrane process, NP030, NP010, and NF90 membranes were used at a volume of 250 mL and 5 bar. A significant COD removal rate of 94% was achieved with the membrane. The combination of EC and the membrane process demonstrated the feasibility of water recovery from TP wastewater.


Assuntos
Grafite , Solanum lycopersicum , Poluentes Químicos da Água , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Alumínio , Eletrocoagulação/métodos , Água , Eletrodos , Resíduos Industriais/análise
2.
J Environ Manage ; 342: 118259, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37311349

RESUMO

The wastewater generated from citric acid production has a high organic loading content. The treatment and reuse of citric acid wastewater with high organic loading become extremely important. In this study, the performance of calcium hydroxide (Ca(OH)2) precipitation as a low-cost and environmentally friendly pre-treatment method and aerobic membrane bioreactor (MBR) combined treatment system was investigated for the treatment of citric acid (CA) wastewater. At the first step, optimization parameters such as agitation speed (100, 150, 200 rpm), temperature (30, 50, 70 °C), and reaction time (2, 4, 6 h) for Ca(OH)2 precipitation as a pre-treatment method were investigated using response surface methodology (RSM) to achieve maximum chemical oxygen demand (COD) removal. Experimental sets were designed using Box-Behnken Design. As a result of pre-treatment with Ca(OH)2 precipitation, a COD removal efficiency of 97.3% was obtained. Then, pre-treated CA wastewater was fed continuously to the MBR process for 10 days, which was the second stage of the combined process. As a result of the MBR process, 92.0% COD removal efficiency was obtained for 24 h HRT and 10 days SRT. In total, 99.8% COD removal efficiency was obtained when combined process was used and COD concentration decreased from 52,000-114 mg/L. For the treatment and reuse of wastewater from citric acid production, Ca(OH)2 precipitation and MBR combined treatment systems demonstrated an effective strategy.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Membranas , Precipitação Química
3.
J Food Sci Technol ; 60(1): 73-83, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618055

RESUMO

In this study, antioxidant (DPPH and metal chelating), DNA cleavage, biofilm, and antimicrobial properties of extracted phenol from the walnut green husk (WGH) and its different concentrate and permeate samples were evaluated. For maximum phenolic compound extraction from the WGH first, the effects of solvent type (deionized water, methanol, n-hexane, acetone, and ethanol), solvent temperature (25-75 °C), and extraction time (0.5-24 h) were optimized. Then to concentrate phenolic compounds a pressure-driven membrane process was used with four different membrane types. The phenol contents of the concentrate samples were found to be microfiltration (MF) concentrate 4400 mg/L, ultrafiltration (UF) concentrate 4175 mg/L, nanofiltration (NF) concentrate 8155 mg/L, and reverse osmosis (RO) concentrate 8100 mg/L. LC-MSMS was used to determine the quantification of phenolic compounds in permeate and concentrate streams. In addition, all of the concentrate samples with high phenol content showed a high antioxidant activity as 100% with MF concentrate, UF concentrate, NF concentrated and RO concentrated. Likewise, concentrate samples were found to have very high antibiofilm activity as 82.86% for NF concentrate againts S. aureus, 85.80% for NF concentrate against P. aureginosa, 80.95% for RO concentrate against S. aureus, and 83.61% for RO-concentrate against P. aureginosa. When the antimicrobial activity of the extracted phenol from WGH and its different concentrate and permeate samples were evaluated by micro dilution and disk diffusion methods, it was found that the ability of the concentrate samples to inhibit bacterial growth was much higher than permeate ones. In addition, extracted phenol from WGH and its different concentrate and permeate samples showed significant DNA nuclease activity. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05588-w.

4.
Environ Res ; 219: 115072, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36529334

RESUMO

In this research, nanoparticles derived from water extract of Centaurea solstitialis leaves were used as green adsorbent in Fenton reaction for Reactive Red 180 (RR180) and Basic Red 18 (BR18) dyes removal. At optimum operating conditions, nanoparticles proved high performance in the tested dyes removal with more than 98% of removal elimination. The free-radical scavenging, DNA nuclease, biofilm inhibition capability, antimicrobial activity, microbial cell viability, and antimicrobial photodynamic therapy activities of the iron oxide nanoparticles (FeO-NPs) derived from water and methanol extract of plant were investigated. Each of the following analysis: SEM-EDX, XRD, and Zeta potential was implemented for the prepared NPs characterization and to describe their morphology, composition and its behavior in an aqueous solution, respectively. It was found that, the DPPH scavenging activities increased when the amount of nanoparticles increased. The highest radical scavenging activity achieved with FeO-NPs derived from water extract of plant as 97.41% at 200 mg/L. The new green synthesized FeO-NPs demonstrated good DNA cleavage activity. FeO-NPs showed good in vitro antimicrobial activities against human pathogens. The results showed that both synthesized FeO-NPs displayed 100% antimicrobial photodynamic therapy activity after LED irradiation. The water extract of FeO-NPs and methanol extract of FeO-NPs also showed a significant biofilm inhibition.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Humanos , Água , Metanol , Nanopartículas/química , Anti-Infecciosos/farmacologia , Corantes/química , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
5.
Environ Sci Pollut Res Int ; 29(51): 77071-77080, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35676574

RESUMO

Fenton oxidation is an effective and valuable method for wastewater treatment. To inhibit environmental impacts and increase overall reaction efficiencies, it is important to develop advanced catalysts. This paper illustrates an experimental study on the elimination of RR180 dye from synthetic aqueous solutions with raw leonardite and different iron-loaded leonardite powders, Fe(0)-loaded leonardite, and Fe(II)-loaded leonardite. The effect of solution pH (2.0-6.0), catalyst amount (0.10-1.5 g/L), H2O2 concentration (10-50 µL/L), and dye concentration (10-30 ppm) was tested to achieve maximum color removal efficiency using the three catalysts. At pH = 2, color removal efficiencies were higher and more suitable. Initial experiments showed the advantage of using Fe(II)-loaded leonardite on using Fe(0)-loaded leonardite. Fe(II)-loaded leonardite catalyst was the most efficient in RR180 color removal compared to the other tested reagents. Color removal in function of solution pH did not decrease much when Fe(II)-loaded leonardite was used (100 to 96%) when pH was increased from 2.0 to 6.0. In the other hand, dye removal has been significantly affected in the case of using raw leonardite, Fe(0)-loaded leonardite (93 to 0%), and (100 to 13%) in the same pH range, respectively. At optimum experimental conditions, catalyst amount: 0.75 g/L for Fe(II) and Fe(0)-loaded leonardite and 1.5 g/L for raw leonardite; dye concentration: 10 ppm; solution pH: 2.0; H2O2 concentration: 50 µL/L; volume: 100 mL and reaction time: 60 min, RR180 dye removal efficiencies were 91%, 100%, and 100% by raw leonardite, Fe(0)-loaded leonardite and Fe(II)-loaded leonardite, respectively. The stability and reusability of the tested catalyst was investigated up to ten cycles. The experimental results revealed that both Fe(0)-loaded leonardite and Fe(II)-loaded leonardite can be used in Fenton reaction up to four cycles without decreasing their efficiency in RR180 color removal. The characterization of the catalysts was established using scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDX). The synthesized catalyst can be used at large scale in any textile industry to effectively remove dyes resulting in high elimination rates at the optimal determined and studied conditions.


Assuntos
Peróxido de Hidrogênio , Ferro , Peróxido de Hidrogênio/química , Pós , Ferro/química , Catálise , Oxirredução , Corantes/química , Compostos Ferrosos
6.
Water Environ Res ; 94(5): e10719, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35502751

RESUMO

This paper aims to investigate the uses of leonardite powder (LP) as an effective adsorbent for the removal of basic red 18 (BR18) and reactive red 180 (RR180) dyes. LP was characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Zeta potential, Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared spectroscopy (FTIR), and X-ray fluorescence (XRF). The adsorption process was assessed based on pH, size and the amount of the adsorbent, BR18 and RR180 concentration, and the contact time. BR18 dye was completely adsorbed onto the LP (the removal efficiency equals 100%) after 45 min at the optimum condition (original pH [6.5], the particle size of 45 µm, the adsorbent dose of 0.25 g/L, and the initial concentration of 10 mg/L). For RR180, the maximum removal efficiency (74%) was obtained when 1 g/L LP with 45 um size was added to an RR180 solution of 10 mg/L concentration. Temkin isotherm was used to explain the adsorption of BR18. In contrast, RR180 adsorption was described by the Freundlich model. The adsorptions of both dyes followed the pseudo-second-order kinetics. The reusability of the LP was assessed. For BR18, the efficiency decreased to 96% in the second cycle and reached 42% in the fifth cycle. In RR180, LP was not able to be reused efficiently. As a result, the LP ability for BR18 removal is higher than the RR180 in terms of uptake and reusability. PRACTITIONER POINTS: BR18 and RR180 dyes elimination was carried out with leonardite powder (LP). The maximum removal efficiencies for BR18 and RR180 were 100% and 74%, respectively. The LP ability for BR18 removal is higher than the RR180 in terms of uptake and reusability.


Assuntos
Corantes , Poluentes Químicos da Água , Adsorção , Minerais , Pós , Poluentes Químicos da Água/química
7.
Chemosphere ; 300: 134492, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35398064

RESUMO

It is very important to treat Cr(VI) from the aquatic environment due to its toxic and harmful effects. Conventional treatment methodology involving biological pathways is generally ineffective for wastewater containing Cr(VI). Therefore, it is necessary to develop environmentally friendly and economical methods to remove Cr(VI) from the aquatic environment. In this study, leonardite, which is a natural mineral that has no harmful effects on the environment, was used for Cr(VI) removal. Leonardite was used in both adsorption and photocatalytic treatment systems by only pulverizing without any chemical treatment. Characterizations of leonardite were obtained using X-ray fluorescence (XRF), fouirer transform infrared spektrofotometre (FTIR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) analyses methods. The effects of solution pH (2-10), particle size (45-300 µm), adsorbent dose (0.25-3 g/L), and initial concentration (10-30 mg/L) on Cr(VI) removal efficiency were investigated in both adsorption and photocatalytic experiments. In the adsorption process, a complete removal efficiency (100%) was obtained for 3 g/L of adsorbent dose with an initial Cr(VI) concentration of 10 mg/L at pH 2 for 2 h. In the photocatalytic process, 100% removal efficiency of Cr(VI) was obtained when four times less adsorbent dosage was used under the same conditions. In addition, the reuse of leonardite powder was also investigated under optimum experimental conditions. Leonardite powder preserved approximately 70% of its activity in the photocatalytic process while it lost 50% of its activity after 5 reuses in adsorption process.


Assuntos
Poluentes Químicos da Água , Adsorção , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Minerais , Pós , Poluentes Químicos da Água/análise
8.
Chemosphere ; 74(11): 1450-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19157492

RESUMO

Endosulfan has been applied to control numerous insects in a variety of food and non-food crops. Limited information is available on dynamics of this pesticide in the soil. The objective of this research was to determine the adsorption-desorption behavior of the alpha (alpha) and beta (beta) endosulfan in a Vertisol from the southeast region of Turkey, where cotton is the main crop in the large irrigated lowlands. The alpha and beta endosulfan were adsorbed considerably and Freundlich adsorption-desorption isotherms fitted the alpha and beta endosulfan data (R(2)>0.98). Freundlich adsorption coefficients (K(f)) for the alpha endosulfan ranged between 21.63 and 16.33 while for the beta endosulfan they were between 14.01 and 17.98 for the Ap and Bw2 horizons. The difference of K(f) values of alpha and beta endosulfan for two horizons were explained with the slight difference in the amount of organic matter and clay, but considerable difference in Fe contents of the two horizons. Alpha and beta endosulfan K(fd) values were 118.03 and 45.81 for the Ap and 48.08 and 68.71 for the Bw2 horizons. Higher adsorption and desorption behavior of the endosulfan isomers for the same horizon was attributed to poor physical bonding between the endosulfan molecule and the surfaces of fundamental soil particles. This fact is thought to increase the effective use of endosulfan in agriculture with a possibility of its movement to the surface and groundwater in the Vertisol studied.


Assuntos
Endossulfano/química , Inseticidas/química , Poluentes do Solo/química , Adsorção , Monitoramento Ambiental , Interações Hidrofóbicas e Hidrofílicas , Resíduos de Praguicidas/análise , Solo/análise , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...