Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Pharm Res ; 41(5): 921-935, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684562

RESUMO

PURPOSE: This study examined the effects of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) on folliculogenesis and mitochondrial dynamics (fission and fusion mechanisms) in ovaries of middle-aged female rats. METHODS: Experimental groups were young, middle-aged (control), middle-aged + NMN and middle-aged + NR. NMN was administered at a concentration of 500 mg/kg intraperitoneally but NR at a concentration of 200 mg/kg by gavage. Follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels were analyzed by ELISA. Hematoxylin-eosin staining sections were used for histopathological examination and follicles-counting. Expression levels of mitochondrial fission (Drp1, Mff and Fis1) and fusion (Mfn1, Mfn2, Opa1, Fam73a and Fam73b) genes as well as Sirt1 gene were analyzed by RT-PCR. Expression levels of fission-related proteins (DRP1, MFF, FIS1 and SIRT1) were analyzed by Western Blot. RESULTS: Higher ovarian index, more corpus luteum and antral follicles were detected in NMN and NR groups compared to the control. NMN or NR could rebalance LH/FSH ratio. The control group was determined to possess higher expression levels of fission genes and lower expression levels of fusion genes when compared the young group. In comparison with the control group, both NMN and NR group were found to exhibit less mitochondrial fission but more mitochondrial fussion. Higher gene and protein levels for Sirt1 were measured in NMN and NR groups compared to the control group. CONCLUSION: This study reveals that NMN alone or NR alone can rebalance mitochondrial dynamics by decreasing excessive fission in middle-aged rat ovaries, thus alleviating mitochondrial stress and correcting aging-induced folliculogenesis abnormalities.


Assuntos
Envelhecimento , Dinâmica Mitocondrial , Niacinamida , Mononucleotídeo de Nicotinamida , Ovário , Compostos de Piridínio , Animais , Feminino , Dinâmica Mitocondrial/efeitos dos fármacos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Mononucleotídeo de Nicotinamida/metabolismo , Ratos , Compostos de Piridínio/farmacologia , Sirtuína 1/metabolismo , Sirtuína 1/genética , Hormônio Luteinizante/metabolismo , Hormônio Luteinizante/sangue , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Ratos Sprague-Dawley , Hormônio Foliculoestimulante/metabolismo , Dinaminas
3.
Crit Rev Food Sci Nutr ; : 1-24, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38156661

RESUMO

In humans, exogenous antioxidants aid the endogenous antioxidant system to detoxify excess ROS generated during oxidative stress, thereby protecting the body against various diseases and stressful conditions. The majority of natural antioxidants available on the consumer market are plant-based; however, fungi are being recognized as alternative sources of various natural antioxidants such as polysaccharides, pigments, peptides, sterols, phenolics, alkaloids, and flavonoids. In addition, some exogenous antioxidants are exclusively found in fungi. Fungi-derived antioxidants exhibit scavenging activities against DPPH, ABTS, hydroxyl, superoxide, hydrogen peroxide, and nitric oxide radicals in vitro. Furthermore, in vivo models, application of fungal-derived antioxidants increase the level of various antioxidant enzymes, such as catalases, superoxide dismutases, and glutathione peroxidases, and reduce the level of malondialdehyde. Therefore, fungi-derived antioxidants have potential to be used in the food, cosmetic, and pharmaceutical industries. This review summarizes the antioxidant potential of different fungi (mushrooms, yeasts, and molds)-derived natural compounds such as polysaccharides, pigments, peptides, ergothioneine, ergosterol, phenolics, alkaloids, etc.

4.
3 Biotech ; 13(1): 31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36606139

RESUMO

Peptones are one of the most expensive components of microbial culture media. The present study was conducted to test the usability of low-cost sheep wool peptone (SWP) as an organic nitrogen source in the production of six industrially important enzymes (lipase, amylase, tannase, pectinase, cellulase and invertase). SWP was prepared by alkaline hydrolysis and acid neutralization. Bacillus licheniformis and Aspergillus niger were selected as test microorganisms for enzyme production. To evaluate the efficacy of SWP in enzyme production, it was compared with commercial tryptone peptone (TP) in the shaking flask cultures of the test microorganisms. The optimum concentration of both SWP and TP was determined to be 8 g/L for the production of B. licheniformis-derived enzymes, but 6 g/L for the production of A. niger-derived enzymes. It was determined that SWP was superior to TP in the production of four enzymes (lipase, amylase, tannase and pectinase) of both B. licheniformis and A. niger. This is the first study about the usage of sheep wool protein hydrolysate (SWP) as an organic nitrogen source or a peptone in fermentative production of microbial enzymes.

5.
Biol Trace Elem Res ; 200(4): 1650-1658, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34105085

RESUMO

This study was performed to investigate whether the toxicity of nanoparticles (Ag NPs or TiO2 NPs) affected mitochondrial dynamics (mitochondrial fusion and fission mechanisms) in testicular cells of mice. Animals were assigned into three groups (ten mice per group): control group (distilled water), TiO2 NP group (5 mg/kg per dose), and Ag NP group (5 mg/kg per dose). NPs were administered intravenously (via tail vein) to mice with 3-day intervals. To determine the possible toxic effect of NPs on mitochondrial dynamics, the expression levels of mitochondrial fission (Drp1)- and fusion (Mfn1, Mfn2, OPA1)-related genes were analyzed. The results showed that both Ag NPs and TiO2 NPs entered the testis via the blood-testis barier and accumulated in mouse testis tissue. Experiments showed that administration of Ag NPs neither alters testicular weight and testicular index nor causes significant toxic effect on sperm parameters. RT-PCR analysis demonstrated that Ag NP treatment did not disrupt mitochondrial dynamics in testicular cells. Conversely, administration of TiO2 NPs (anatase, < 25 nm) decreased the sperm motility and the percentages of sperms with swollen tail. Furthermore, RT-PCR and western blot analyses showed that TiO2 NPs disrupted mitochondrial dynamics by causing excess mitochondrial fission (excess expression of Drp1 gene and DRP1 protein). This is the first report on the toxicity of nanoparticles on mitochondrial dynamics (fusion and fission mechanisms) in testicular cells.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Animais , Masculino , Nanopartículas Metálicas/toxicidade , Camundongos , Dinâmica Mitocondrial , Prata/farmacologia , Motilidade dos Espermatozoides , Testículo/metabolismo , Titânio/toxicidade
6.
Environ Technol ; 42(20): 3245-3253, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32192416

RESUMO

Non-sterile culture technique is currently used in some microbial processes. However, there is no study on the use of this technique in the production of microbial lipases and hydrolysis of waste frying oils. This study was conducted to hydrolyse waste frying oils and produce lipase under non-sterile culture conditions using locally isolated cold-adapted bacteria. Of 75 bacterial isolates, the psychrotolerant Pseudomonas yamanorum LP2 (Genbank number: KU711080) was determined to have the highest lipase activity. It was found that a combination of restricted nutrient availability, low temperature and high inoculum volume prevented microbial contaminants under non-sterile conditions. The most favourable parameters for lipase production under both sterile and non-sterile conditions were 15°C temperature, pH 8, 30 mL/L inoculum volume, 40 mL/L waste frying oil concentration, 10 mL/L Tween-80 and 72 h incubation time. The maximum lipase activities in sterile and non-sterile media were determined as 93.3 and 96.8 U/L, respectively. The present process designed for enzyme production and waste oil hydrolysis can reduce the cost of cultivation medium as well as energy consumption and workload. The potential of cold-adapted bacteria to produce lipase and hydrolyse waste oils under non-sterile culture conditions was first tested in the current study.


Assuntos
Lipase , Pseudomonas , Hidrólise , Óleos
7.
Arch Microbiol ; 204(1): 107, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34972980

RESUMO

This study was performed to elucidate the effects of two fungal quorum sensing molecules (tyrosol and farnesol) on carotenoid synthesis in the yeast Rhodotorula glutinis and prodigioin synthesis in the bacterium Serratia marcencens. Farnesol or tyrosol was directly added to the flask cultures at the beginning (immediately after inoculation with the preculture) of day 1 or the beginning (49th h) of day 3. The results demonstrated that tyrosol supplementation increased the synthesis of carotenoids but farnesol supplementation increased the synthesis of prodigiosin. It was found that adding farnesol or tyrosol into the culture on day 3 compared to day 1 caused more increments in pigment synthesis. The maximum increase (fivefold) in the synthesis of prodigiosin was achieved with 200 µL/L farnesol supplementation, whereas the maximum increase (2.13 fold) in the synthesis of carotenoids was achieved with 4 mg/L tyrosol supplementation. This is the first report about the effects of fungal quorum sensing molecules (farnesol and tyrosol) on the synthesis of carotenoids and prodigiosin in microorganisms. Due to non-human toxicity and low price and of farnesol and tyrosol, these molecules can be used as novel inducers for large-scale production of microbial pigments.


Assuntos
Farneseno Álcool , Prodigiosina , Biofilmes , Carotenoides , Farneseno Álcool/farmacologia , Álcool Feniletílico/análogos & derivados
8.
J Basic Microbiol ; 60(8): 669-678, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32449551

RESUMO

This study focused on investigating the effect of exogenously applied two quorum sensing molecules (tyrosol and farnesol) on the synthesis of bioactive metabolites (pigments, lactic acid, ethanol, and citric acid) in Monascus purpureus ATCC16365. None of the tested concentrations (62.5, 125, 250, and 500 µl/L) of farnesol affected the synthesis of metabolites as well as cell growth. As with farnesol application, none of the tested concentrations (3.45, 6.9, 13.8, and 27.6 mg/L) of tyrosol caused a significant change in the synthesis of lactic acid and citric acid as well as cell growth. Conversely, all of the tested concentrations of tyrosol increased pigment synthesis but reduced ethanol synthesis, compared with the control. Maximum increases (3.16-, 2.68-, and 2.87-fold increase, respectively) in yellow, orange, and red pigment production were achieved, especially when 6.9-mg/L tyrosol was added to the culture on day 3. On the contrary, 6.9-mg/L tyrosol reduced the content of citrinin by approximately 51.5%. This is the first report on the effect of tyrosol and farnesol on the synthesis of Monascus metabolites. Due to potential properties, such as low price, nonhuman toxicity, promotion of pigment synthesis, and reduction in citrinin synthesis, tyrosol can be used as a novel inducer in the fermentative production of Monascus pigments.


Assuntos
Farneseno Álcool/farmacologia , Monascus/efeitos dos fármacos , Álcool Feniletílico/análogos & derivados , Pigmentos Biológicos/biossíntese , Ácido Cítrico/metabolismo , Etanol/metabolismo , Fermentação , Ácido Láctico/biossíntese , Monascus/crescimento & desenvolvimento , Monascus/metabolismo , Álcool Feniletílico/farmacologia
9.
J Biotechnol ; 231: 32-39, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27234881

RESUMO

The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study.


Assuntos
Reatores Biológicos/microbiologia , Células Imobilizadas/metabolismo , Ácido Cítrico/metabolismo , Lactose/metabolismo , Soro do Leite , Yarrowia/metabolismo , Ácido Cítrico/análise , Temperatura Baixa , Soro do Leite/química , Soro do Leite/metabolismo
10.
Folia Microbiol (Praha) ; 59(1): 9-16, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23722276

RESUMO

The aims of the present study were to isolate new yeasts with high extracellular (exo) invertase activity and to investigate the usability of buffer systems as invertase production media by immobilized yeast cells. Among 70 yeast isolates, Cryptococcus laurentii MT-61 had the highest exo-invertase activity. Immobilization of yeast cells was performed using sodium alginate. Higher exo-invertase activity for immobilized cells was achieved in tris-sucrose buffer system (TSBS) compared to sodium acetate buffer system and potassium phosphate buffer system. TSBS was prepared by dissolving 30 g of sucrose in 1 L of tris buffer solution. The optimum pH, temperature, and incubation time for invertase production with immobilized cells were determined as 8.0, 35 °C and 36 h in TSBS, respectively. Under optimized conditions, maximum exo-invertase activity was found to be 28.4 U/mL in sterile and nonsterile TSBS. Immobilized cells could be reused in 14 and 12 successive cycles in sterile and nonsterile TSBS without any loss in the maximum invertase activity, respectively. This is the first report which showed that immobilized microbial cells could be used as a biocatalyst for exo-invertase production in buffer system. As an additional contribution, a new yeast strain with high invertase activity was isolated.


Assuntos
Células Imobilizadas/enzimologia , Células Imobilizadas/metabolismo , Cryptococcus/enzimologia , Cryptococcus/metabolismo , Meios de Cultura/química , beta-Frutofuranosidase/isolamento & purificação , Biotecnologia/métodos , Soluções Tampão , Concentração de Íons de Hidrogênio , Sacarose , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...