Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1298007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304423

RESUMO

Atrial fibrillation (AF), the most common arrhythmia, has been associated with different electrophysiological, molecular, and structural alterations in atrial cardiomyocytes. Therefore, more studies are required to elucidate the genetic and molecular basis of AF. Various genome-wide association studies (GWAS) have strongly associated different single nucleotide polymorphisms (SNPs) with AF. One of these GWAS identified the rs13376333 risk SNP as the most significant one from the 1q21 chromosomal region. The rs13376333 risk SNP is intronic to the KCNN3 gene that encodes for small conductance calcium-activated potassium channels type 3 (SK3). However, the functional electrophysiological effects of this variant are not known. SK channels represent a unique family of K+ channels, primarily regulated by cytosolic Ca2+ concentration, and different studies support their critical role in the regulation of atrial excitability and consequently in the development of arrhythmias like AF. Since different studies have shown that both upregulation and downregulation of SK3 channels can lead to arrhythmias by different mechanisms, an important goal is to elucidate whether the rs13376333 risk SNP is a gain-of-function (GoF) or a loss-of-function (LoF) variant. A better understanding of the functional consequences associated with these SNPs could influence clinical practice guidelines by improving genotype-based risk stratification and personalized treatment. Although research using native human atrial cardiomyocytes and animal models has provided useful insights, each model has its limitations. Therefore, there is a critical need to develop a human-derived model that represents human physiology more accurately than existing animal models. In this context, research with human induced pluripotent stem cells (hiPSC) and subsequent generation of cardiomyocytes derived from hiPSC (hiPSC-CMs) has revealed the underlying causes of various cardiovascular diseases and identified treatment opportunities that were not possible using in vitro or in vivo studies with animal models. Thus, the ability to generate atrial cardiomyocytes and atrial tissue derived from hiPSCs from human/patients with specific genetic diseases, incorporating novel genetic editing tools to generate isogenic controls and organelle-specific reporters, and 3D bioprinting of atrial tissue could be essential to study AF pathophysiological mechanisms. In this review, we will first give an overview of SK-channel function, its role in atrial fibrillation and outline pathophysiological mechanisms of KCNN3 risk SNPs. We will then highlight the advantages of using the hiPSC-CM model to investigate SNPs associated with AF, while addressing limitations and best practices for rigorous hiPSC studies.

2.
Can J Cardiol ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37952715

RESUMO

The advent of human induced pluripotent stem cells (hiPSCs) and their capacity to be differentiated into beating human cardiomyocytes (CMs) in vitro has revolutionized human disease modelling, genotype-phenotype predictions, and therapeutic testing. Hypertrophic cardiomyopathy (HCM) is a common inherited cardiomyopathy and the leading known cause of sudden cardiac arrest in young adults and athletes. On a molecular level, HCM is often driven by single pathogenic genetic variants, usually in sarcomeric proteins, that can alter the mechanical, electrical, signalling, and transcriptional properties of the cell. A deeper knowledge of these alterations is critical to better understanding HCM manifestation, progression, and treatment. Leveraging hiPSC-CMs to investigate the molecular mechanisms driving HCM presents a unique opportunity to dissect the consequences of genetic variants in a sophisticated and controlled manner. In this review, we summarize the molecular underpinnings of HCM and the role of hiPSC-CM studies in advancing our understanding, and we highlight the advances in hiPSC-CM-based modelling of HCM, including maturation, contractility, multiomics, and genome editing, with the notable exception of electrophysiology, which has been previously covered.

3.
Methods ; 203: 542-557, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34197925

RESUMO

Fundamental to the functional behavior of cardiac muscle is that the cardiomyocytes are integrated as a functional syncytium. Disrupted electrical activity in the cardiac tissue can lead to serious complications including cardiac arrhythmias. Therefore, it is important to study electrophysiological properties of the cardiac tissue. With advancements in stem cell research, protocols for the production of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been established, providing great potential in modelling cardiac arrhythmias and drug testing. The hiPSC-CM model can be used in conjunction with electrophysiology-based platforms to examine the electrical activity of the cardiac tissue. Techniques for determining the myocardial electrical activity include multielectrode arrays (MEAs), optical mapping (OM), and patch clamping. These techniques provide critical approaches to investigate cardiac electrical abnormalities that underlie arrhythmias.


Assuntos
Células-Tronco Pluripotentes Induzidas , Potenciais de Ação/fisiologia , Arritmias Cardíacas/genética , Células Cultivadas , Fenômenos Eletrofisiológicos , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia
4.
Curr Protoc ; 1(12): e320, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34958715

RESUMO

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a potentially lethal inherited cardiac arrhythmia condition, triggered by physical or acute emotional stress, that predominantly expresses early in life. Gain-of-function mutations in the cardiac ryanodine receptor gene (RYR2) account for the majority of CPVT cases, causing substantial disruption of intracellular calcium (Ca2+ ) homeostasis particularly during the periods of ß-adrenergic receptor stimulation. However, the highly variable penetrance, patient outcomes, and drug responses observed in clinical practice remain unexplained, even for patients with well-established founder RyR2 mutations. Therefore, investigation of the electrophysiological consequences of CPVT-causing RyR2 mutations is crucial to better understand the pathophysiology of the disease. The development of strategies for reprogramming human somatic cells to human induced pluripotent stem cells (hiPSCs) has provided a unique opportunity to study inherited arrhythmias, due to the ability of hiPSCs to differentiate down a cardiac lineage. Employment of genome editing enables generation of disease-specific cell lines from healthy and diseased patient-derived hiPSCs, which subsequently can be differentiated into cardiomyocytes. This paper describes the means for establishing an hiPSC-based model of CPVT in order to recapitulate the disease phenotype in vitro and investigate underlying pathophysiological mechanisms. The framework of this approach has the potential to contribute to disease modeling and personalized medicine using hiPSC-derived cardiomyocytes. © 2021 Wiley Periodicals LLC.


Assuntos
Células-Tronco Pluripotentes Induzidas , Taquicardia Ventricular , Humanos , Miócitos Cardíacos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética
5.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502196

RESUMO

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare and potentially lethal inherited arrhythmia disease characterized by exercise or emotion-induced bidirectional or polymorphic ventricular tachyarrhythmias. The median age of disease onset is reported to be approximately 10 years of age. The majority of CPVT patients have pathogenic variants in the gene encoding the cardiac ryanodine receptor, or calsequestrin 2. These lead to mishandling of calcium in cardiomyocytes resulting in after-depolarizations, and ventricular arrhythmias. Disease severity is particularly pronounced in younger individuals who usually present with cardiac arrest and arrhythmic syncope. Risk stratification is imprecise and long-term prognosis on therapy is unknown despite decades of research focused on pediatric CPVT populations. The purpose of this review is to summarize contemporary data on pediatric CPVT, highlight knowledge gaps and present future research directions for the clinician-scientist to address.


Assuntos
Emoções/fisiologia , Exercício Físico , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Taquicardia Ventricular/terapia , Criança , Humanos , Taquicardia Ventricular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...