Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249218

RESUMO

Uso1/p115 and RAB1 tether ER-derived vesicles to the Golgi. Uso1/p115 contains a globular-head-domain (GHD), a coiled-coil (CC) mediating dimerization/tethering, and a C-terminal region (CTR) interacting with golgins. Uso1/p115 is recruited to vesicles by RAB1. Genetic studies placed Uso1 paradoxically acting upstream of, or in conjunction with RAB1 (Sapperstein et al., 1996). We selected two missense mutations in uso1 resulting in E6K and G540S in the GHD that rescued lethality of rab1-deficient Aspergillus nidulans. The mutations are phenotypically additive, their combination suppressing the complete absence of RAB1, which emphasizes the key physiological role of the GHD. In living hyphae Uso1 recurs on puncta (60 s half-life) colocalizing partially with the Golgi markers RAB1, Sed5, and GeaA/Gea1/Gea2, and totally with the retrograde cargo receptor Rer1, consistent with Uso1 dwelling in a very early Golgi compartment from which ER residents reaching the Golgi recycle back to the ER. Localization of Uso1, but not of Uso1E6K/G540S, to puncta is abolished by compromising RAB1 function, indicating that E6K/G540S creates interactions bypassing RAB1. That Uso1 delocalization correlates with a decrease in the number of Gea1 cisternae supports that Uso1-and-Rer1-containing puncta are where the protein exerts its physiological role. In S-tag-coprecipitation experiments, Uso1 is an associate of the Sed5/Bos1/Bet1/Sec22 SNARE complex zippering vesicles with the Golgi, with Uso1E6K/G540S showing a stronger association. Using purified proteins, we show that Bos1 and Bet1 bind the Uso1 GHD directly. However, Bet1 is a strong E6K/G540S-independent binder, whereas Bos1 is weaker but becomes as strong as Bet1 when the GHD carries E6K/G540S. G540S alone markedly increases GHD binding to Bos1, whereas E6K causes a weaker effect, correlating with their phenotypic contributions. AlphaFold2 predicts that G540S increases the binding of the GHD to the Bos1 Habc domain. In contrast, E6K lies in an N-terminal, potentially alpha-helical, region that sensitive genetic tests indicate as required for full Uso1 function. Remarkably, this region is at the end of the GHD basket opposite to the end predicted to interact with Bos1. We show that, unlike dimeric full-length and CTR∆ Uso1 proteins, the GHD lacking the CC/CTR dimerization domain, whether originating from bacteria or Aspergillus extracts and irrespective of whether it carries or not E6K/G540S, would appear to be monomeric. With the finding that overexpression of E6K/G540S and wild-type GHD complement uso1∆, our data indicate that the GHD monomer is capable of providing, at least partially, the essential Uso1 functions, and that long-range tethering activity is dispensable. Rather, these findings strongly suggest that the essential role of Uso1 involves the regulation of SNAREs.


Assuntos
Proteínas SNARE , Proteínas de Transporte Vesicular , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Complexo de Golgi/metabolismo , Domínios Proteicos
2.
PLoS Genet ; 15(12): e1008557, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31869332

RESUMO

TRAnsport Protein Particle complexes (TRAPPs) are ubiquitous regulators of membrane traffic mediating nucleotide exchange on the Golgi regulatory GTPases RAB1 and RAB11. In S. cerevisiae and metazoans TRAPPs consist of two large oligomeric complexes: RAB11-activating TRAPPII and RAB1-activating TRAPPIII. These share a common core TRAPPI hetero-heptamer, absent in metazoans but detected in minor proportions in yeast, likely originating from in vitro-destabilized TRAPPII/III. Despite overall TRAPP conservation, the budding yeast genome has undergone extensive loss of genes, and lacks homologues of some metazoan TRAPP subunits. With nearly twice the total number of genes of S. cerevisiae, another ascomycete Aspergillus nidulans has also been used for studies on TRAPPs. We combined size-fractionation chromatography with single-step purification coupled to mass-spectrometry and negative-stain electron microscopy to establish the relative abundance, composition and architecture of Aspergillus TRAPPs, which consist of TRAPPII and TRAPPIII in a 2:1 proportion, plus a minor amount of TRAPPI. We show that Aspergillus TRAPPIII contains homologues of metazoan TRAPPC11, TRAPPC12 and TRAPPC13 subunits, absent in S. cerevisiae, and establish that these subunits are recruited to the complex by Tca17/TRAPPC2L, which itself binds to the 'Trs33 side' of the complex. Thus Aspergillus TRAPPs compositionally resemble mammalian TRAPPs to a greater extent than those in budding yeast. Exploiting the ability of constitutively-active (GEF-independent, due to accelerated GDP release) RAB1* and RAB11* alleles to rescue viability of null mutants lacking essential TRAPP subunits, we establish that the only essential role of TRAPPs is activating RAB1 and RAB11, and genetically classify each essential subunit according to their role(s) in TRAPPII (TRAPPII-specific subunits) or TRAPPII and TRAPPIII (core TRAPP subunits). Constitutively-active RAB mutant combinations allowed examination of TRAPP composition in mutants lacking essential subunits, which led to the discovery of a stable Trs120/Trs130/Trs65/Tca17 TRAPPII-specific subcomplex whose Trs20- and Trs33-dependent assembly onto core TRAPP generates TRAPPII.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Cromatografia em Gel , Proteínas Fúngicas/metabolismo , Humanos , Mamíferos/metabolismo , Espectrometria de Massas , Saccharomyces cerevisiae/metabolismo
3.
PLoS Genet ; 14(4): e1007291, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29608571

RESUMO

Intracellular traffic in Aspergillus nidulans hyphae must cope with the challenges that the high rates of apical extension (1µm/min) and the long intracellular distances (>100 µm) impose. Understanding the ways in which the hyphal tip cell coordinates traffic to meet these challenges is of basic importance, but is also of considerable applied interest, as fungal invasiveness of animals and plants depends critically upon maintaining these high rates of growth. Rapid apical extension requires localization of cell-wall-modifying enzymes to hyphal tips. By combining genetic blocks in different trafficking steps with multidimensional epifluorescence microscopy and quantitative image analyses we demonstrate that polarization of the essential chitin-synthase ChsB occurs by indirect endocytic recycling, involving delivery/exocytosis to apices followed by internalization by the sub-apical endocytic collar of actin patches and subsequent trafficking to TGN cisternae, where it accumulates for ~1 min before being re-delivered to the apex by a RAB11/TRAPPII-dependent pathway. Accordingly, ChsB is stranded at the TGN by Sec7 inactivation but re-polarizes to the apical dome if the block is bypassed by a mutation in geaAgea1 that restores growth in the absence of Sec7. That polarization is independent of RAB5, that ChsB predominates at apex-proximal cisternae, and that upon dynein impairment ChsB is stalled at the tips in an aggregated endosome indicate that endocytosed ChsB traffics to the TGN via sorting endosomes functionally located upstream of the RAB5 domain and that this step requires dynein-mediated basipetal transport. It also requires RAB6 and its effector GARP (Vps51/Vps52/Vps53/Vps54), whose composition we determined by MS/MS following affinity chromatography purification. Ablation of any GARP component diverts ChsB to vacuoles and impairs growth and morphology markedly, emphasizing the important physiological role played by this pathway that, we propose, is central to the hyphal mode of growth.


Assuntos
Aspergillus nidulans/fisiologia , Endocitose , Hifas/crescimento & desenvolvimento , Rede trans-Golgi/metabolismo , Aspergillus nidulans/enzimologia , Aspergillus nidulans/crescimento & desenvolvimento , Quitina Sintase/metabolismo
4.
FEMS Microbiol Lett ; 364(7)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28379362

RESUMO

CORVET and HOPS are protein complexes mediating the maturation of early endosomes (EEs) into late endosomes (LEs)/vacuoles. These hetero-hexamers share four 'core' components, Vps11, Vps16, Vps18 and Vps33, and differ in two specific subunits, CORVET Vps8 and Vps3 and HOPS Vps39 and Vps41. Whereas ablating HOPS-specific components has minor growth effects, ablating any CORVET constituent severely debilitates Aspergillus nidulans growth, buttressing previous work indicating that maturation of EEs into LEs is physiologically crucial. A genetic screen revealed that impairing the slt cation homeostasis pathway rescues the growth defect resulting from inactivation of the 'core' protein Vps33. Subsequent genetic analyses showed that the defect resulting from lack of any one of the five other CORVET components could similarly be rescued by sltAΔ eliminating the slt regulator SltA. Whereas double deletants lacking functionally non-equivalent components of the CORVET and HOPS complexes are rescued by sltAΔ, those lacking functionally equivalent components are not, suggesting that intermediate 'hybrid' complexes previously detected in yeast are physiologically relevant. vps3Δ, vps8Δ, vps39Δ and vps41Δ result in small vacuoles. This phenotype is remediable by sltAΔ in the case of CORVET-specific, but not in the case of HOPS-specific deletants, indicating that the slt- effect on vacuolar size necessitates HOPS.

5.
Mol Biol Cell ; 27(16): 2598-612, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27307585

RESUMO

Tolerance of Aspergillus nidulans to alkalinity and elevated cation concentrations requires both SltA and SltB. Transcription factor SltA and the putative pseudokinase/protease signaling protein SltB comprise a regulatory pathway specific to filamentous fungi. In vivo, SltB is proteolytically cleaved into its two principal domains. Mutational analysis defines a chymotrypsin-like serine protease domain that mediates SltB autoproteolysis and proteolytic cleavage of SltA. The pseudokinase domain might modulate the protease activity of SltB. Three forms of the SltA transcription factor coexist in cells: a full-length, 78-kDa version and a processed, 32-kDa form, which is found in phosphorylated and unphosphorylated states. The SltA32kDa version mediates transcriptional regulation of sltB and, putatively, genes required for tolerance to cation stress and alkalinity. The full-length form, SltA78kDa, apparently has no transcriptional function. In the absence of SltB, only the primary product of SltA is detectable, and its level equals that of SltA78kDa. Mutations in sltB selected as suppressors of null vps alleles and resulting in cation/alkalinity sensitivity either reduced or eliminated SltA proteolysis. There is no evidence for cation or alkalinity regulation of SltB cleavage, but activation of sltB expression requires SltA. This work identifies the molecular mechanisms governing the Slt pathway.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Tolerância ao Sal/fisiologia , Serina Proteases/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Aspergillus nidulans/enzimologia , Fungos/metabolismo , Concentração de Íons de Hidrogênio , Mutação , Domínios Proteicos , Proteólise , Transdução de Sinais , Estresse Fisiológico/fisiologia
6.
Mol Microbiol ; 101(6): 982-1002, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279148

RESUMO

The pal/RIM ambient pH signalling pathway is crucial for the ability of pathogenic fungi to infect hosts. The Aspergillus nidulans 7-TMD receptor PalH senses alkaline pH, subsequently facilitating ubiquitination of the arrestin PalF. Ubiquitinated PalF triggers downstream signalling events. The mechanism(s) by which PalH transduces the alkaline pH signal to PalF is poorly understood. We show that PalH is phosphorylated in a signal dependent manner, resembling mammalian GPCRs, although PalH phosphorylation, in contrast to mammalian GPCRs, is arrestin dependent. A genetic screen revealed that an ambient-exposed region comprising the extracellular loop connecting TM4-TM5 and ambient-proximal residues within TM5 is required for signalling. In contrast, substitution by alanines of four aromatic residues within TM6 and TM7 results in a weak 'constitutive' activation of the pathway. Our data support the hypothesis that PalH mechanistically resembles mammalian GPCRs that signal via arrestins, such that the relative positions of individual helices within the heptahelical bundle determines the Pro316-dependent transition between inactive and active PalH conformations, governed by an ambient-exposed region including critical Tyr259 that potentially represents an agonist binding site. These findings open the possibility of screening for agonist compounds stabilizing the inactive conformation of PalH, which might act as antifungal drugs against ascomycetes.


Assuntos
Antifúngicos/farmacologia , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Sequência de Aminoácidos , Arrestina/genética , Arrestina/metabolismo , Aspergillus nidulans/metabolismo , Aspergillus nidulans/patogenicidade , Membrana Celular/metabolismo , Análise Mutacional de DNA/métodos , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Terapia de Alvo Molecular , Fosforilação , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo
7.
Mol Microbiol ; 99(1): 199-216, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26395371

RESUMO

Syntaxins are target-SNAREs that crucially contribute to determine membrane compartment identity. Three syntaxins, Tlg2p, Pep12p and Vam3p, organize the yeast endovacuolar system. Remarkably, filamentous fungi lack the equivalent of the yeast vacuolar syntaxin Vam3p, making unclear how these organisms regulate vacuole fusion. We show that the nearly essential Aspergillus nidulans syntaxin PepA(Pep12) , present in all endocytic compartments between early endosomes and vacuoles, shares features of Vam3p and Pep12p, and is capable of forming compositional equivalents of all known yeast endovacuolar SNARE bundles including that formed by yeast Vam3p for vacuolar fusion. Our data further indicate that regulation by two Sec1/Munc-18 proteins, Vps45 in early endosomes and Vps33 in early and late endosomes/vacuoles contributes to the wide domain of PepA(Pep12) action. The syntaxin TlgB(Tlg2) localizing to the TGN appears to mediate retrograde traffic connecting post-Golgi (sorting) endosomes with the TGN. TlgB(Tlg2) is dispensable for growth but becomes essential if the early Golgi syntaxin SedV(Sed5) is compromised, showing that the Golgi can function with a single syntaxin, SedV(Sed5) . Remarkably, its pattern of associations with endosomal SNAREs is consistent with SedV(Sed5) playing roles in retrograde pathway(s) connecting endocytic compartments downstream of the post-Golgi endosome with the Golgi, besides more conventional intra-Golgi roles.


Assuntos
Aspergillus nidulans/fisiologia , Endossomos/metabolismo , Proteínas Fúngicas/metabolismo , Fusão de Membrana , Proteínas Qa-SNARE/metabolismo , Vacúolos/metabolismo , Aspergillus nidulans/citologia
8.
Mol Biol Cell ; 26(21): 3816-27, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26378255

RESUMO

Early endosomes are transported bidirectionally by cytoplasmic dynein and kinesin-3, but how the movements are regulated in vivo remains unclear. Here our forward genetic study led to the discovery of VezA, a vezatin-like protein in Aspergillus nidulans, as a factor critical for early endosome distribution. Loss of vezA causes an abnormal accumulation of early endosomes at the hyphal tip, where microtubule plus ends are located. This abnormal accumulation depends on kinesin-3 and is due to a decrease in the frequency but not the speed of dynein-mediated early endosome movement. VezA-GFP signals are enriched at the hypha tip in an actin-dependent manner but are not obviously associated with early endosomes, thus differing from the early endosome association of the cargo adapter HookA (Hook in A. nidulans). On loss of VezA, HookA associates normally with early endosomes, but the interaction between dynein-dynactin and the early-endosome-bound HookA is significantly decreased. However, VezA is not required for linking dynein-dynactin to the cytosolic ∆C-HookA, lacking the cargo-binding C-terminus. These results identify VezA as a novel regulator required for the interaction between dynein and the Hook-bound early endosomes in vivo.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas de Transporte/metabolismo , Dineínas/metabolismo , Endossomos/metabolismo , Cinesinas/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Dineínas do Citoplasma/metabolismo , Complexo Dinactina , Proteínas Fúngicas/metabolismo , Hifas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo
9.
Mol Microbiol ; 98(6): 1051-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26303777

RESUMO

The Aspergillus nidulans PacC transcription factor mediates gene regulation in response to alkaline ambient pH which, signalled by the Pal pathway, results in the processing of PacC(72) to PacC(27) via PacC(53). Here we investigate two levels at which the pH regulatory system is transcriptionally moderated by pH and identify and characterise a new component of the pH regulatory machinery, PacX. Transcript level analysis and overexpression studies demonstrate that repression of acid-expressed palF, specifying the Pal pathway arrestin, probably by PacC(27) and/or PacC(53), prevents an escalating alkaline pH response. Transcript analyses using a reporter and constitutively expressed pacC trans-alleles show that pacC preferential alkaline-expression results from derepression by depletion of the acid-prevalent PacC(72) form. We additionally show that pacC repression requires PacX. pacX mutations suppress PacC processing recalcitrant mutations, in part, through derepressed PacC levels resulting in traces of PacC(27) formed by pH-independent proteolysis. pacX was cloned by impala transposon mutagenesis. PacX, with homologues within the Leotiomyceta, has an unusual structure with an amino-terminal coiled-coil and a carboxy-terminal zinc binuclear cluster. pacX mutations indicate the importance of these regions. One mutation, an unprecedented finding in A. nidulans genetics, resulted from an insertion of an endogenous Fot1-like transposon.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Aspergillus nidulans/genética , Sítios de Ligação , Elementos de DNA Transponíveis , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Concentração de Íons de Hidrogênio , Mutagênese , Mutação , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Dedos de Zinco/genética
10.
Fungal Genet Biol ; 82: 116-28, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26119498

RESUMO

The transcriptional response to alkali metal cation stress is mediated by the zinc finger transcription factor SltA in Aspergillus nidulans and probably in other fungi of the pezizomycotina subphylum. A second component of this pathway has been identified and characterized. SltB is a 1272 amino acid protein with at least two putative functional domains, a pseudo-kinase and a serine-endoprotease, involved in signaling to the transcription factor SltA. Absence of SltB activity results in nearly identical phenotypes to those observed for a null sltA mutant. Hypersensitivity to a variety of monovalent and divalent cations, and to medium alkalinization are among the phenotypes exhibited by a null sltB mutant. Calcium homeostasis is an exception and this cation improves growth of sltΔ mutants. Moreover, loss of kinase HalA in conjunction with loss-of-function sltA or sltB mutations leads to pronounced calcium auxotrophy. sltA sltB double null mutants display a cation stress sensitive phenotype indistinguishable from that of single slt mutants showing the close functional relationship between these two proteins. This functional relationship is reinforced by the fact that numerous mutations in both slt loci can be isolated as suppressors of poor colonial growth resulting from certain null vps (vacuolar protein sorting) mutations. In addition to allowing identification of sltB, our sltB missense mutations enabled prediction of functional regions in the SltB protein. Although the relationship between the Slt and Vps pathways remains enigmatic, absence of SltB, like that of SltA, leads to vacuolar hypertrophy. Importantly, the phenotypes of selected sltA and sltB mutations demonstrate that suppression of null vps mutations is not dependent on the inability to tolerate cation stress. Thus a specific role for both SltA and SltB in the VPS pathway seems likely. Finally, it is noteworthy that SltA and SltB have a similar, limited phylogenetic distribution, being restricted to the pezizomycotina subphylum. The relevance of the Slt regulatory pathway to cell structure, intracellular trafficking and cation homeostasis and its restricted phylogenetic distribution makes this pathway of general interest for future investigation and as a source of targets for antifungal drugs.


Assuntos
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Cátions/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Transdução de Sinais , Fatores de Transcrição , Dedos de Zinco , Alelos , Sequência de Aminoácidos , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica , Loci Gênicos , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , Alinhamento de Sequência
11.
Cell Mol Life Sci ; 72(17): 3267-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26001903

RESUMO

Microtubule-based distribution of organelles/vesicles is crucial for the function of many types of eukaryotic cells and the molecular motor cytoplasmic dynein is required for transporting a variety of cellular cargos toward the microtubule minus ends. Early endosomes represent a major cargo of dynein in filamentous fungi, and dynein regulators such as LIS1 and the dynactin complex are both required for early endosome movement. In fungal hyphae, kinesin-3 and dynein drive bi-directional movements of early endosomes. Dynein accumulates at microtubule plus ends; this accumulation depends on kinesin-1 and dynactin, and it is important for early endosome movements towards the microtubule minus ends. The physical interaction between dynein and early endosome requires the dynactin complex, and in particular, its p25 component. The FTS-Hook-FHIP (FHF) complex links dynein-dynactin to early endosomes, and within the FHF complex, Hook interacts with dynein-dynactin, and Hook-early endosome interaction depends on FHIP and FTS.


Assuntos
Citoplasma/metabolismo , Dineínas/metabolismo , Endossomos/metabolismo , Fungos/metabolismo , Microtúbulos/fisiologia , Modelos Biológicos , Transporte Biológico/fisiologia , Dineínas/genética , Microtúbulos/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(14): 4346-51, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831508

RESUMO

The oligomeric complex transport protein particle I (TRAPPI) mediates nucleotide exchange on the RAB GTPase RAB1/Ypt1. TRAPPII is composed of TRAPPI plus three additional subunits, Trs120, Trs130, and Trs65. Unclear is whether TRAPPII mediates nucleotide exchange on RAB1/Ypt1, RAB11/Ypt31, or both. In Aspergillus nidulans, RabO(RAB1) resides in the Golgi, RabE(RAB11) localizes to exocytic post-Golgi carriers undergoing transport to the apex, and hypA encodes Trs120. RabE(RAB11), but not RabO(RAB1), immunoprecipitates contain Trs120/Trs130/Trs65, demonstrating specific association of TRAPPII with RabE(RAB11) in vivo. hypA1(ts) rapidly shifts RabE(RAB11), but not RabO(RAB1), to the cytosol, consistent with HypA(Trs120) being specifically required for RabE(RAB11) activation. Missense mutations rescuing hypA1(ts) at 42 °C mapped to rabE, affecting seven residues. Substitutions in six, of which four resulted in 7- to 36-fold accelerated GDP release, rescued lethality associated to TRAPPII deficiency, whereas equivalent substitutions in RabO(RAB1) did not, establishing that the essential role of TRAPPII is facilitating RabE(RAB11) nucleotide exchange. In vitro, TRAPPII purified with HypA(Trs120)-S-tag accelerates nucleotide exchange on RabE(RAB11) and, paradoxically, to a lesser yet substantial extent, on RabO(RAB1). Evidence obtained by exploiting hypA1-mediated destabilization of HypA(Trs120)/HypC(Trs130)/Trs65 assembly onto the TRAPPI core indicates that these subunits sculpt a second RAB binding site on TRAPP apparently independent from that for RabO(RAB1), which would explain TRAPPII in vitro activity on two RABs. Using A. nidulans in vivo microscopy, we show that HypA(Trs120) colocalizes with RabE(RAB11), arriving at late Golgi cisternae as they dissipate into exocytic carriers. Thus, TRAPPII marks, and possibly determines, the Golgi-to-post-Golgi transition.


Assuntos
Aspergillus nidulans/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Complexo de Golgi/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Aspergillus nidulans/metabolismo , Sítios de Ligação , Citosol/metabolismo , Escherichia coli/metabolismo , Exocitose , Proteínas Fúngicas/genética , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Guanosina Difosfato/metabolismo , Microscopia de Fluorescência , Mutação , Mutação de Sentido Incorreto , Fenótipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética
13.
Eukaryot Cell ; 14(6): 545-53, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25841020

RESUMO

Aspergillus nidulans (Pal) ambient pH signaling takes place in cortical structures containing components of the ESCRT pathway, which are hijacked by the alkaline pH-activated, ubiquitin-modified version of the arrestin-like protein PalF and taken to the plasma membrane. There, ESCRTs scaffold the assembly of dedicated Pal proteins acting downstream. The molecular details of this pathway, which results in the two-step proteolytic processing of the transcription factor PacC, have received considerable attention due to the key role that it plays in fungal pathogenicity. While current evidence strongly indicates that the pH signaling role of ESCRT complexes is limited to plasma membrane-associated structures where PacC proteolysis would take place, the localization of the PalB protease, which almost certainly catalyzes the first and only pH-regulated proteolytic step, had not been investigated. In view of ESCRT participation, this formally leaves open the possibility that PalB activation requires endocytic internalization. As endocytosis is essential for hyphal growth, nonlethal endocytic mutations are predicted to cause an incomplete block. We used a SynA internalization assay to measure the extent to which any given mutation prevents endocytosis. We show that none of the tested mutations impairing endocytosis to different degrees, including slaB1, conditionally causing a complete block, have any effect on the activation of the pathway. We further show that PalB, like PalA and PalC, localizes to cortical structures in an alkaline pH-dependent manner. Therefore, signaling through the Pal pathway does not involve endocytosis.


Assuntos
Aspergillus nidulans/metabolismo , Endocitose , Aspergillus nidulans/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
FEBS Lett ; 588(24): 4799-806, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25451223

RESUMO

Golgi Arf1-guanine nucleotide exchange factors (GEFs) belong to two subfamilies: GBF/Gea and BIG/Sec7. Both are conserved across eukaryotes, but the physiological role of each is not well understood. Aspergillus nidulans has a single member of the early Golgi GBF/Gea-subfamily, geaA, and the late Golgi BIG/Sec7-subfamily, hypB. Both geaA and hypB are essential. hypB5 conditionally blocks secretion. We sought extragenic hypB5 suppressors and obtained geaA1. geaA1 results in Tyr1022Cys within a conserved GBF/Gea-specific S(Y/W/F)(L/I) motif in GeaA. This mutation alters GeaA localization. Remarkably, geaA1 suppresses hypBΔ, indicating that a single mutant Golgi Arf1-GEF suffices for growth.


Assuntos
Substituição de Aminoácidos , Aspergillus fumigatus/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mutação , Motivos de Aminoácidos , Sequência de Aminoácidos , Aspergillus fumigatus/citologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/química , Fatores de Troca do Nucleotídeo Guanina/química , Espaço Intracelular/metabolismo , Dados de Sequência Molecular , Transporte Proteico
15.
Curr Opin Microbiol ; 22: 49-59, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25460796

RESUMO

The alkaline pH-responsive Pal/Rim signal transduction pathway mediating regulation of gene expression by ambient pH has been extensively studied in Aspergillus nidulans and Saccharomyces cerevisiae. In A. nidulans, PalH, PalI, PalF, PalC, PalA and PalB are required for the proteolytic activation of the executing transcription factor PacC. Although necessary, Pal proteins are insufficient to transmit the signal, which additionally requires ESCRT-I, II and Vps20 with Snf7 in ESCRT-III. Although this initially suggested cooperation between a plasma membrane sensor and an ESCRT-containing Pal complex on endosomes, recent evidence convincingly indicates that pH signaling actually takes place in plasma membrane-associated foci in which Pal proteins and an ESCRT-III polymer scaffold cooperate for pH signaling purposes, representing another non-endosomal role of ESCRT components.


Assuntos
Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Transdução de Sinais , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Calpaína/metabolismo , Proteínas Fúngicas/química , Humanos , Multimerização Proteica , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
J Cell Biol ; 204(6): 1009-26, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24637327

RESUMO

Cytoplasmic dynein transports membranous cargoes along microtubules, but the mechanism of dynein-cargo interaction is unclear. From a genetic screen, we identified a homologue of human Hook proteins, HookA, as a factor required for dynein-mediated early endosome movement in the filamentous fungus Aspergillus nidulans. HookA contains a putative N-terminal microtubule-binding domain followed by coiled-coil domains and a C-terminal cargo-binding domain, an organization reminiscent of cytoplasmic linker proteins. HookA-early endosome interaction occurs independently of dynein-early endosome interaction and requires the C-terminal domain. Importantly, HookA interacts with dynein and dynactin independently of HookA-early endosome interaction but dependent on the N-terminal part of HookA. Both dynein and the p25 subunit of dynactin are required for the interaction between HookA and dynein-dynactin, and loss of HookA significantly weakens dynein-early endosome interaction, causing a virtually complete absence of early endosome movement. Thus, HookA is a novel linker important for dynein-early endosome interaction in vivo.


Assuntos
Aspergillus nidulans/metabolismo , Dineínas/metabolismo , Endossomos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Sequência de Aminoácidos , Aspergillus nidulans/genética , Aspergillus nidulans/ultraestrutura , Transporte Biológico , Mapeamento Cromossômico , Endossomos/ultraestrutura , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hifas/genética , Hifas/metabolismo , Hifas/ultraestrutura , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
17.
G3 (Bethesda) ; 3(7): 1129-41, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23665873

RESUMO

After dephosphorylation by the phosphatase calcineurin, the fungal transcription factor CrzA enters the nucleus and activates the transcription of genes responsible for calcium homeostasis and many other calcium-regulated activities. A lack of CrzA confers calcium-sensitivity to the filamentous fungus Aspergillus nidulans. To further understand calcium signaling in filamentous fungi and to identify genes that interact genetically with CrzA, we selected for mutations that were able to suppress crzAΔ calcium intolerance and identified three genes. Through genetic mapping, gene sequencing, and mutant rescue, we were able to identify these as cnaB (encoding the calcineurin regulatory subunit), folA (encoding an enzyme involved in folic acid biosynthesis, dihydroneopterin aldolase), and scrC (suppression of crzA(-), encoding a hypothetical protein). By using a calcium indicator, Fluo-3, we were able to determine that the wild-type and the suppressor strains were either able to regulate intracellular calcium levels or were able to take up and or store calcium correctly. The increased expression of calcium transporters, pmcA and/or pmcB, in suppressor mutants possibly enabled tolerance to high levels of calcium. Our results suggest that a cnaB suppressor mutation confers calcium tolerance to crzAΔ strains through restoration of calcium homeostasis. These results stress that in A. nidulans there are calcineurin-dependent and CrzA-independent pathways. In addition, it is possible that CrzA is able to contribute to the modulation of folic acid biosynthesis.


Assuntos
Aspergillus nidulans/genética , Cálcio/metabolismo , Proteínas Fúngicas/genética , Homeostase , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus nidulans/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Sinalização do Cálcio/genética , Mapeamento Cromossômico , Regulação Fúngica da Expressão Gênica , Supressão Genética
18.
Mol Microbiol ; 89(2): 228-48, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23714354

RESUMO

The mechanisms governing traffic across the Golgi are incompletely understood. We studied, by live-cell microscopy, the consequences of disorganizing the Aspergillus nidulans Golgi, using an extended set of fluorescent protein markers to resolve early from late cisternae. The early Golgi syntaxin SedV(Sed) (5) and the RabO(Rab) (1) regulatory GTPase play essential roles in secretion, cooperating in the ER-Golgi interface. Following a temperature shift-up 'on-the-stage', hyphae carrying engineered sedV(R258G) and rabO(A136D) ts mutations arrest polarized growth. This arrest correlates with overall Golgi disorganization and characteristic hyphal tip swelling. Using v-SNARE SynA as reporter, we show that the sedV(R258G) phenotypes correlate with arrested secretion. Both the morphogenetic defect and the secretory deficit are reversible. Thus downregulation of secretion, like that of endocytosis, has morphogenetic consequences, implying that mechanisms tuning the secretory pathway might be involved in developmental processes. According to the cisternal maturation model, acute impairment of traffic in the ER-Golgi interface should lead to disorganization of both the early and the late Golgi cisternae. Thus, the relatively rapid late Golgi disorganization observed upon shifting ER-Golgi interface mutants to the restrictive temperature seems incompatible with an A. nidulans Golgi network organized on the basis of stable early and late compartments, supporting instead cisternal maturation.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Fusão de Membrana/fisiologia , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Proteínas Fúngicas/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Mutação , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Imagem com Lapso de Tempo
19.
Cell Logist ; 2(1): 2-14, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22645705

RESUMO

The genetically tractable filamentous ascomycete fungus Aspergillus nidulans has been successfully exploited to gain major insight into the eukaryotic cell cycle. More recently, its amenability to in vivo multidimensional microscopy has fueled a potentially gilded second age of A. nidulans cell biology studies. This review specifically deals with studies on intracellular membrane traffic in A. nidulans. The cellular logistics are subordinated to the needs imposed by the polarized mode of growth of the multinucleated hyphal tip cells, whereas membrane traffic is adapted to the large intracellular distances. Recent work illustrates the usefulness of this fungus for morphological and biochemical studies on endosome and Golgi maturation, and on the role of microtubule-dependent motors in the long-distance movement of endosomes. The fungus is ideally suited for genetic studies on the secretory pathway, as mutations impairing secretion reduce apical extension rates, resulting in phenotypes detectable by visual inspection of colonies.

20.
Mol Microbiol ; 84(3): 530-49, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22489878

RESUMO

Type I casein kinases are highly conserved among Eukaryotes. Of the two Aspergillus nidulans casein kinases I, CkiA is related to the δ/ε mammalian kinases and to Saccharomyces cerevisiae Hrr25p. CkiA is essential. Three recessive ckiA mutations leading to single residue substitutions, and downregulation using a repressible promoter, result in partial loss-of-function, which leads to a pleiotropic defect in amino acid utilization and resistance to toxic amino acid analogues. These phenotypes correlate with miss-routing of the YAT plasma membrane transporters AgtA (glutamate) and PrnB (proline) to the vacuole under conditions that, in the wild type, result in their delivery to the plasma membrane. Miss-routing to the vacuole and subsequent transporter degradation results in a major deficiency in the uptake of the corresponding amino acids that underlies the inability of the mutant strains to catabolize them. Our findings may have important implications for understanding how CkiA, Hrr25p and other fungal orthologues regulate the directionality of transport at the ER-Golgi interface.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aspergillus nidulans/enzimologia , Caseína Quinase I/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Aspergillus nidulans/química , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Transporte Biológico , Caseína Quinase I/química , Caseína Quinase I/genética , Membrana Celular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Ácido Glutâmico/metabolismo , Dados de Sequência Molecular , Prolina/metabolismo , Transporte Proteico , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...