Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(5): 051201, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595214

RESUMO

We report the first detection of a TeV γ-ray flux from the solar disk (6.3σ), based on 6.1 years of data from the High Altitude Water Cherenkov (HAWC) observatory. The 0.5-2.6 TeV spectrum is well fit by a power law, dN/dE=A(E/1 TeV)^{-γ}, with A=(1.6±0.3)×10^{-12} TeV^{-1} cm^{-2} s^{-1} and γ=3.62±0.14. The flux shows a strong indication of anticorrelation with solar activity. These results extend the bright, hard GeV emission from the disk observed with Fermi-LAT, seemingly due to hadronic Galactic cosmic rays showering on nuclei in the solar atmosphere. However, current theoretical models are unable to explain the details of how solar magnetic fields shape these interactions. HAWC's TeV detection thus deepens the mysteries of the solar-disk emission.

2.
Phys Rev Lett ; 130(6): 061001, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36827568

RESUMO

Instantons, which are nonperturbative solutions to Yang-Mills equations, provide a signal for the occurrence of quantum tunneling between distinct classes of vacua. They can give rise to decays of particles otherwise forbidden. Using data collected at the Pierre Auger Observatory, we search for signatures of such instanton-induced processes that would be suggestive of super-heavy particles decaying in the Galactic halo. These particles could have been produced during the post-inflationary epoch and match the relic abundance of dark matter inferred today. The nonobservation of the signatures searched for allows us to derive a bound on the reduced coupling constant of gauge interactions in the dark sector: α_{X}≲0.09, for 10^{9}≲M_{X}/GeV<10^{19}. Conversely, we obtain that, for instance, a reduced coupling constant α_{X}=0.09 excludes masses M_{X}≳3×10^{13} GeV. In the context of dark matter production from gravitational interactions alone, we illustrate how these bounds are complementary to those obtained on the Hubble rate at the end of inflation from the nonobservation of tensor modes in the cosmological microwave background.

3.
Phys Rev Lett ; 124(13): 131101, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302173

RESUMO

Because of the high energies and long distances to the sources, astrophysical observations provide a unique opportunity to test possible signatures of Lorentz invariance violation (LIV). Superluminal LIV enables the decay of photons at high energy. The high altitude water Cherenkov (HAWC) observatory is among the most sensitive gamma-ray instruments currently operating above 10 TeV. HAWC finds evidence of 100 TeV photon emission from at least four astrophysical sources. These observations exclude, for the strongest of the limits set, the LIV energy scale to 2.2×10^{31} eV, over 1800 times the Planck energy and an improvement of 1 to 2 orders of magnitude over previous limits.

4.
Phys Rev Lett ; 124(2): 021102, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004015

RESUMO

We present the first catalog of gamma-ray sources emitting above 56 and 100 TeV with data from the High Altitude Water Cherenkov Observatory, a wide field-of-view observatory capable of detecting gamma rays up to a few hundred TeV. Nine sources are observed above 56 TeV, all of which are likely galactic in origin. Three sources continue emitting past 100 TeV, making this the highest-energy gamma-ray source catalog to date. We report the integral flux of each of these objects. We also report spectra for three highest-energy sources and discuss the possibility that they are PeVatrons.

6.
Nature ; 562(7725): 82-85, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30283106

RESUMO

SS 433 is a binary system containing a supergiant star that is overflowing its Roche lobe with matter accreting onto a compact object (either a black hole or neutron star)1-3. Two jets of ionized matter with a bulk velocity of approximately 0.26c (where c is the speed of light in vacuum) extend from the binary, perpendicular to the line of sight, and terminate inside W50, a supernova remnant that is being distorted by the jets2,4-8. SS 433 differs from other microquasars (small-scale versions of quasars that are present within our own Galaxy) in that the accretion is believed to be super-Eddington9-11, and the luminosity of the system is about 1040 ergs per second2,9,12,13. The lobes of W50 in which the jets terminate, about 40 parsecs from the central source, are expected to accelerate charged particles, and indeed radio and X-ray emission consistent with electron synchrotron emission in a magnetic field have been observed14-16. At higher energies (greater than 100 gigaelectronvolts), the particle fluxes of γ-rays from X-ray hotspots around SS 433 have been reported as flux upper limits6,17-20. In this energy regime, it has been unclear whether the emission is dominated by electrons that are interacting with photons from the cosmic microwave background through inverse-Compton scattering or by protons that are interacting with the ambient gas. Here we report teraelectronvolt γ-ray observations of the SS 433/W50 system that spatially resolve the lobes. The teraelectronvolt emission is localized to structures in the lobes, far from the centre of the system where the jets are formed. We have measured photon energies of at least 25 teraelectronvolts, and these are certainly not Doppler-boosted, because of the viewing geometry. We conclude that the emission-from radio to teraelectronvolt energies-is consistent with a single population of electrons with energies extending to at least hundreds of teraelectronvolts in a magnetic field of about 16 microgauss.

7.
Science ; 358(6365): 911-914, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29146808

RESUMO

The unexpectedly high flux of cosmic-ray positrons detected at Earth may originate from nearby astrophysical sources, dark matter, or unknown processes of cosmic-ray secondary production. We report the detection, using the High-Altitude Water Cherenkov Observatory (HAWC), of extended tera-electron volt gamma-ray emission coincident with the locations of two nearby middle-aged pulsars (Geminga and PSR B0656+14). The HAWC observations demonstrate that these pulsars are indeed local sources of accelerated leptons, but the measured tera-electron volt emission profile constrains the diffusion of particles away from these sources to be much slower than previously assumed. We demonstrate that the leptons emitted by these objects are therefore unlikely to be the origin of the excess positrons, which may have a more exotic origin.

8.
Phys Rev Lett ; 113(22): 221101, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25494064

RESUMO

We report the first direct measurement of the overall characteristics of microwave radio emission from extensive air showers. Using a trigger provided by the KASCADE-Grande air shower array, the signals of the microwave antennas of the Cosmic-Ray Observation via Microwave Emission experiment have been read out and searched for signatures of radio emission by high-energy air showers in the GHz frequency range. Microwave signals have been detected for more than 30 showers with energies above 3×10^{16} eV. The observations presented in this Letter are consistent with a mainly forward-directed and polarized emission process in the GHz frequency range. The measurements show that microwave radiation offers a new means of studying air showers at E≥10^{17} eV.

9.
Phys Rev Lett ; 107(17): 171104, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107501

RESUMO

We report the observation of a steepening in the cosmic ray energy spectrum of heavy primary particles at about 8×10(16) eV. This structure is also seen in the all-particle energy spectrum, but is less significant. Whereas the "knee" of the cosmic ray spectrum at 3-5×10(15) eV was assigned to light primary masses by the KASCADE experiment, the new structure found by the KASCADE-Grande experiment is caused by heavy primaries. The result is obtained by independent measurements of the charged particle and muon components of the secondary particles of extensive air showers in the primary energy range of 10(16) to 10(18) eV. The data are analyzed on a single-event basis taking into account also the correlation of the two observables.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...