Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37760240

RESUMO

Probiotic supplementation in dairy cattle has achieved several beneficial effects (improved growth rate, immune response, and adequate ruminal microbiota). This study assessed the effects on the growth parameters and gut microbiota of newborn dairy calves supplemented with two Lactobacillus-based probiotics, individually (6BZ or 6BY) or their combination (6BZ + 6BY), administrated with the same concentration (1 × 109 CFU/kg weight) at three times, between days 5 and 19 after birth. The control group consisted of probiotic-unsupplemented calves. Growth parameters were recorded weekly until eight weeks and at the calves' ages of three, four, and five months. Fecal microbiota was described by high-throughput sequencing and bioinformatics. Although no significant effects were observed regarding daily weight and height gain among probiotic-supplemented and non-supplemented calves, correlation analysis showed that growth rate was maintained until month 5 through probiotic supplementation, mainly when the two-strain probiotics were supplied. Modulation effects on microbiota were observed in probiotic-supplemented calves, improving the Bacteroidota: Firmicutes and the Proteobacteria ratios. Functional prediction by PICRUSt also showed an increment in several pathways when the two-strain probiotic was supplemented. Therefore, using the three-administration scheme, the two-strain probiotic improved the growth rate and gut microbiota profile in newborn dairy calves. However, positive effects could be reached by applying more administrations of the probiotic during the first 20 days of a calf's life.

2.
Plants (Basel) ; 12(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37111891

RESUMO

Bacteria have been used to increase crop yields. For their application on crops, bacteria are provided in inoculant formulations that are continuously changing, with liquid- and solid-based products. Bacteria for inoculants are mainly selected from natural isolates. In nature, microorganisms that favor plants exhibit various strategies to succeed and prevail in the rhizosphere, such as biological nitrogen fixation, phosphorus solubilization, and siderophore production. On the other hand, plants have strategies to maintain beneficial microorganisms, such as the exudation of chemoattractanst for specific microorganisms and signaling pathways that regulate plant-bacteria interactions. Transcriptomic approaches are helpful in attempting to elucidate plant-microorganism interactions. Here, we present a review of these issues.

3.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455462

RESUMO

Hibiscus sabdariffa Linn. Malvaceae (HS) is characterized by its edible calyxes. The HS calyxes are widely used for cosmetic, food, and medicinal applications. According to ethnobotanical evidence, decoction, infusion, or maceration extracts from HS calyxes have been used in folk medicine to treat many ailments. Moreover, several in vitro and in vivo studies have demonstrated the pharmacological properties and potential human health benefits of HS consumption. On the other hand, the evaluation of the physiological effects and health benefits of HS in clinical studies is most challenging. Therefore, this narrative review summarizes and discusses the physiological effects and health benefits of HS calyxes reported in clinical trials. Preparations obtained from HS calyxes (extracts, infusions, decoction, teas, beverages, capsules, and pills) are used as non-pharmacological therapies to prevent/control diverse chronic non-communicable diseases. The most-reported HS health benefits are its antihypertensive, antidyslipidemic, hypoglycemic, body fat mass reduction, nephroprotective, antianemic, antioxidant, anti-inflammatory, and anti-xerostomic activities; these effects are associated with the phytochemicals found in HS. Moreover, no adverse effects were reported during the clinical trials. However, clinical studies exhibited some limitations; thus, further studies are required to validate the clinical efficacy of HS in large-scale studies with higher doses and a good experimental design.

4.
Microorganisms ; 10(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056565

RESUMO

The poultry industry is constantly demanding novel strategies to improve the productivity and health status of hens, prioritizing those based on the holistic use of natural resources. This study aimed to assess the effects of an Allium-based phytobiotic on productivity, egg quality, and fecal microbiota of laying hens. One hundred and ninety-two 14-week-old Lohmann Lite LSL hens were allocated into an experimental farm, fed with a commercial concentrate with and without the Allium-based phytobiotic, and challenged against Salmonella. Productivity, egg quality, and fecal microbiota were monitored for 20 weeks. Results showed that the phytobiotic caused an increase on the number of eggs laid (p < 0.05) and in the feed conversion rate (p < 0.05); meanwhile, egg quality, expressed as egg weight, albumin height, haugh units, egg shell strength, and egg shell thickness remained unchanged (p > 0.05), although yolk color was decreased. Fecal microbiota structure was also modified, indicating a modulation of the gut microbiota by increasing the presence of Firmicutes and Bacteroidetes but reducing Proteobacteria and Actinobacteria phyla. Predicted changes in the functional profiles of fecal microbiota suggest alterations in metabolic activities that could be responsible for the improvement and maintenance of productivity and egg quality when the phytobiotic was supplemented; thus, Allium-based phytobiotic has a major impact on the performance of laying hens associated with a possible gut microbiota modulation.

5.
Animals (Basel) ; 12(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35011208

RESUMO

Salmonella spp. is a facultative intracellular pathogen causing localized or systemic infections, involving economic and public health significance, and remains the leading pathogen of food safety concern worldwide, with poultry being the primary transmission vector. Antibiotics have been the main strategy for Salmonella control for many years, which has allowed producers to improve the growth and health of food-producing animals. However, the utilization of antibiotics has been reconsidered since bacterial pathogens have established and shared a variety of antibiotic resistance mechanisms that can quickly increase within microbial communities. The use of alternatives to antibiotics has been recommended and successfully applied in many countries, leading to the core aim of this review, focused on (1) describing the importance of Salmonella infection in poultry and the effects associated with the use of antibiotics for disease control; (2) discussing the use of feeding-based (prebiotics, probiotics, bacterial subproducts, phytobiotics) and non-feeding-based (bacteriophages, in ovo injection, vaccines) strategies in poultry production for Salmonella control; and (3) exploring the use of complementary strategies, highlighting those based on -omics tools, to assess the effects of using the available antibiotic-free alternatives and their role in lowering dependency on the existing antimicrobial substances to manage bacterial infections in poultry effectively.

6.
3 Biotech ; 11(10): 447, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34631348

RESUMO

The giant landrace of maize Jala is a native crop cultured in Nayarit and Jalisco States in the occident of México. In this study, after screening 374 rhizospheric and endophytic bacteria isolated from rhizospheric soil, root, and seed tissues of maize Jala, a total of 16 bacterial strains were selected for their plant-growth-promoting potential and identified by 16S rRNA phylogenetic analysis. The isolates exhibited different combinations of phenotypic traits, including solubilisation of phosphate from hydroxyapatite, production of a broad spectrum of siderophores such as cobalt, iron, molybdenum, vanadium, or zinc (Co2+, Fe3+, Mo2 +, V5+, Zn2+), and nitrogen fixation capabilities, which were detected in both rhizospheric and endophytic strains. Additional traits such as production of 1-aminocyclopropane-1-carboxylate deaminase and a high-rate production of Indoleacetic Acid were exclusively detected on endophytic isolates. Among the selected strains, the rhizospheric Burkholderia sp., and Klebsiella variicola, and the endophytic Pseudomonas protegens significantly improved the growth of maize plants in greenhouse assays and controlled the infection against Fusarium sp. 50 on fresh maize cobs. These results present the first deep approach on handling autochthonous microorganisms from native maize with a potential biotechnological application in sustainable agriculture as biofertilizers or biopesticides.

7.
Nanomaterials (Basel) ; 11(2)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562669

RESUMO

Magnesium oxide nanoparticles (MgO NPs) were obtained by the calcination of precursor microparticles (PM) synthesized by a novel triethylamine-based precipitation method. Scanning electron microscopy (SEM) revealed a mean size of 120 nm for the MgO NPs. The results of the characterizations for MgO NPs support the suggestion that our material has the capacity to attack, and have an antibacterial effect against, Gram-negative and Gram-positive bacteria strains. The ability of the MgO NPs to produce reactive oxygen species (ROS), such as superoxide anion radicals (O2•-) or hydrogen peroxide (H2O2), was demonstrated by the corresponding quantitative assays. The MgO antibacterial activity was evaluated against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria, with minimum inhibitory concentrations (MICs) of 250 and 500 ppm on the microdilution assays, respectively. Structural changes in the bacteria, such as membrane collapse; surface changes, such as vesicular formation; and changes in the longitudinal and horizontal sizes, as well as the circumference, were observed using atomic force microscopy (AFM). The lipidic peroxidation of the bacterial membranes was quantified, and finally, a bactericidal mechanism for the MgO NPs was also proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...