Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 35(15): 5305-5315, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30924341

RESUMO

Cell membranes have been proposed to be laterally inhomogeneous, particularly in the case of mammalian cells, due to the presence of "domains" enriched in sphingolipids and cholesterol (Chol). Among membrane sphingolipids, sphingomyelin (SM) in the cell plasma membrane is known to be degraded to ceramide (Cer) by acid sphingomyelinases under stress conditions. Since cholesterol (Chol) is abundant in the plasma membrane, the study of ternary mixtures SM:Chol:Cer is interesting from the point of view of membrane biophysics, and it might be physiologically relevant. In previous studies, we have described the homogeneous gel phase formed by phospholipid:Chol:Cer at 54:23:23 mol ratios, where phospholipid was either SM or dipalmitoylphosphatidylcholine (DPPC). We now provide new data, based on trans-parinaric acid and diphenylhexatriene fluorescence, supporting that the gel phase includes all three components in a single bilayer. The main question addressed in this paper is the stability of the ternary gel phase when bilayer composition is changed, specifically when the SM proportion is varied. To this aim, we have prepared bilayers of composition phospholipid:Chol:Cer at X:Y:Y ratios, in which phospholipid increased between 54 and 70 mol %. The N-palmitoyl derivatives of SM (pSM) and Cer (pCer) have been used. We observe that for X = 54 or 60 mol %, a gel phase is clearly predominant. However, when the proportion of phospholipid increases beyond 60 mol %, i.e., in 66:17:17 or 70:15:15 mixtures, a lateral phase separation occurs at the micrometer scale. These data can be interpreted in terms of a pCer:Chol interaction, that would predominate at the lower phospholipid concentrations. The putative pCer:Chol complexes (or nanodomains) would mix well with the phospholipid. At the higher SM concentrations pSM:pCer and pSM:Chol interactions would become more important, giving rise to the coexisting gel and liquid-ordered phases respectively. Heterogeneity, or lateral phase separation, occurs more easily with pSM than with DPPC, indicating a higher affinity of SM over DPPC for Chol or Cer. The observation that heterogeneity, or lateral phase separation, occurs more easily with pSM than with DPPC, indicates a higher affinity of SM over DPPC for Chol or Cer, and can be related to cell regulation through the sphingolipid signaling pathway.


Assuntos
Ceramidas/química , Colesterol/química , Bicamadas Lipídicas/química , 1,2-Dipalmitoilfosfatidilcolina/sangue , Anisotropia , Varredura Diferencial de Calorimetria , Polarização de Fluorescência , Microscopia de Força Atômica , Microscopia Confocal , Fosfolipídeos/química , Esfingomielinas/química , Lipossomas Unilamelares/química
2.
Biophys J ; 113(4): 860-868, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28834722

RESUMO

Ceramide is a sphingolipid involved in several cellular processes, including apoptosis. It has been proposed that ceramide forms large and stable channels in the mitochondrial outer membrane that induce cell death through direct release of cytochrome c. However, this mechanism is still debated because the membrane permeabilizing activity of ceramide remains poorly understood. To determine whether the mechanism of ceramide-induced membrane leakage is consistent with the hypothesis of an apoptotic ceramide channel, we have used here assays of calcein release from liposomes. When assaying liposomes containing sphingomyelin and cholesterol, we observed an overall gradual phenomenon of contents release, together with some all-or-none leakage (at low ceramide concentrations or short times). The presence of channels in the bilayer should cause only an all-or-none leakage. When liposomes poor in sphingomyelin/cholesterol or mimicking the lipid composition of the mitochondrial outer membrane were tested, we did not detect any leakage. In consequence, the hypothesis of formation of large ceramide channels in the membrane is not consistent with our results. Instead we propose that the presence of ceramide in one of the membrane monolayers causes a surface area mismatch between both monolayers, which leads to vesicle collapse. The gradual phenomenon of calcein release would be due to a competition between two ceramide effects; namely, lateral segregation that facilitates permeabilization, and at longer times, trans-bilayer flip-flop that opposes asymmetric lateral segregation and causes a mismatch.


Assuntos
Ceramidas/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Fluoresceínas/metabolismo , Lipossomos/metabolismo , Esfingomielinas/metabolismo
3.
Colloids Surf B Biointerfaces ; 155: 173-181, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28456048

RESUMO

Biogenic polyamines (PAs), spermine, spermidine and putrescine are widely spread amino acid derivatives, present in living cells throughout the whole evolutionary scale. Their amino groups confer them a marked basic character at the cellular pH. We have tested the interaction of PAs with negatively-charged phospholipids in the absence and presence of nucleic acids (tRNA was mainly used for practical reasons). PAs induced aggregation of lipid vesicles containing acidic phospholipids. Aggregation was detected using both spectroscopic and fluorescence microscopy methods (the latter with giant unilamellar vesicles). PA-liposome complexes were partially disaggregated when nucleic acids were added to the mixture, indicating a competition between lipids and nucleic acids for PAs in a multiple equilibrium phenomenon. Equivalent observations could be made when vesicles composed of oleic acid and 1-decanol (1:1mol ratio) were used instead of phospholipid liposomes. The data could evoke putative primitive processes of proto-biotic evolution. At the other end of the time scale, this system may be at the basis of an interesting tool in the development of nanoscale drug delivery.


Assuntos
Putrescina/química , RNA de Transferência/química , Espermidina/química , Espermina/química , Lipossomas Unilamelares/química , Portadores de Fármacos , Álcoois Graxos/química , Cinética , Modelos Químicos , Ácido Oleico/química , Origem da Vida , Fosfatidilcolinas/química , Fosfatos de Fosfatidilinositol/química , Fosfatidilinositóis/química , Saccharomyces cerevisiae/química , Eletricidade Estática , Termodinâmica
4.
Langmuir ; 31(8): 2484-92, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25658138

RESUMO

Three ceramide analogues have been synthesized, with sphingosine-like chains containing five conjugated double bonds. Pentaene I has an N-palmitoyl acyl chain, while the other two pentaenes contain also a doxyl radical, respectively, at C5 (Penta5dox) and at C16 (Penta16dox) positions of the N-acyl chain. Pentaene I maximum excitation and emission wavelengths in a phospholipid bilayer are 353 and 478 nm, respectively. Pentaene I does not segregate from the other lipids in the way natural ceramide does, but rather mixes with them in a selective way according to the lipid phases involved. Fluorescence confocal microscopy studies show that when lipid domains in different physical states coexist, Pentaene I emission is higher in gel than in fluid domains, and in liquid-ordered than in liquid-disordered areas. Electron paramagnetic resonance of the pentaene doxyl probes confirms that these molecules are sensitive to the physical state of the bilayer. Calorimetric and fluorescence quenching experiments suggest that the lipids under study orient themselves in lipid bilayers with their polar moieties located at the lipid-water interface. The doxyl radical in the N-acyl chain quenches the fluorescence of the pentaene group when in close proximity. Because of this property, Penta16dox can detect gel-fluid transitions in phospholipids. The availability of probes for lipids in the gel phase is important in view of novel evidence for the existence of gel microdomains in cell membranes.


Assuntos
Ceramidas/química , Fluorescência , Corantes Fluorescentes/química , Polienos/química , Ceramidas/síntese química , Corantes Fluorescentes/síntese química , Estrutura Molecular , Polienos/síntese química
5.
FASEB J ; 29(6): 2371-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25713054

RESUMO

Type I phosphatidylinositol 4-phosphate 5-kinases (PIP5KIs; α, ß, and γ) are a family of isoenzymes that produce phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] using phosphatidylinositol 4-phosphate as substrate. Their structural homology with the class II lipid kinases [type II phosphatidylinositol 5-phosphate 4-kinase (PIP4KII)] suggests that PIP5KI dimerizes, although this has not been formally demonstrated. Neither the hypothetical structural dimerization determinants nor the functional consequences of dimerization have been studied. Here, we used Förster resonance energy transfer, coprecipitation, and ELISA to show that PIP5KIß forms homo- and heterodimers with PIP5KIγ_i2 in vitro and in live human cells. Dimerization appears to be a general phenomenon for PIP5KI isoenzymes because PIP5KIß/PIP5KIα heterodimers were also detected by mass spectrometry. Dimerization was independent of actin cytoskeleton remodeling and was also observed using purified proteins. Mutagenesis studies of PIP5KIß located the dimerization motif at the N terminus, in a region homologous to that implicated in PIP4KII dimerization. PIP5KIß mutants whose dimerization was impaired showed a severe decrease in PI(4,5)P2 production and plasma membrane delocalization, although their association to lipid monolayers was unaltered. Our results identify dimerization as an integral feature of PIP5K proteins and a central determinant of their enzyme activity.


Assuntos
Membrana Celular/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Multimerização Proteica , Ensaio de Imunoadsorção Enzimática , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Células HL-60 , Humanos , Immunoblotting , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia Confocal , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Especificidade por Substrato
6.
Biophys J ; 104(3): 604-12, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23442911

RESUMO

Sphingomyelins (SMs) and ceramides are known to interact favorably in bilayer membranes. Because ceramide lacks a headgroup that could shield its hydrophobic body from unfavorable interactions with water, accommodation of ceramide under the larger phosphocholine headgroup of SM could contribute to their favorable interactions. To elucidate the role of SM headgroup for SM/ceramide interactions, we explored the effects of reducing the size of the phosphocholine headgroup (removing one, two, or three methyls on the choline moiety, or the choline moiety itself). Using differential scanning calorimetry and fluorescence spectroscopy, we found that the size of the SM headgroup had no marked effect on the thermal stability of ordered domains formed by SM analog/palmitoyl ceramide (PCer) interactions. In more complex bilayers composed of a fluid glycerophospholipid, SM analog, and PCer, the thermal stability and molecular order of the laterally segregated gel domains were roughly identical despite variation in SM headgroup size. We suggest that that the association between PCer and SM analogs was stabilized by ceramide's aversion for disordered phospholipids, by interfacial hydrogen bonding between PCer and the SM analogs, and by attractive van der Waals' forces between saturated chains of PCer and SM analogs.


Assuntos
Ceramidas/química , Esfingomielinas/química , Varredura Diferencial de Calorimetria , Colina/química , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Microscopia de Fluorescência , Estrutura Molecular , Temperatura
7.
Biophys J ; 103(9): 1870-9, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23199915

RESUMO

The sphingoid bases of sphingolipids, including ceramides, can vary in length from 12 to >20 carbons. To study how such length variation affects the bilayer properties of ceramides, we synthesized ceramides consisting of a C12-, C14-, C16-, C18-, or C20-sphing-4-enin derivative coupled to palmitic acid. The ceramides were studied in mixtures with palmitoyloleoylphosphocholine (POPC) and/or palmitoylsphingomyelin (PSM), and in more complex bilayers also containing cholesterol. The trans-parinaric acid lifetimes showed that 12:1- and 14:1-PCer failed to increase the order of POPC bilayers, whereas 16:1-, 18:1-, and 20:1-PCer induced ordered- or gel-phase formation. Nevertheless, all of the analogs were able to thermally stabilize PSM, and a chain-length-dependent increase in the main phase transition temperature of equimolar PSM/Cer bilayers was revealed by differential scanning calorimetry. Similar thermal stabilization of PSM-rich domains by the ceramides was observed in POPC bilayers with a trans-parinaric acid-quenching assay. A cholestatrienol-quenching assay and sterol partitioning experiments showed that 18:1- and 20:1-PCer formed sterol-excluding gel phases with PSM, reducing the overall bilayer affinity of sterol. The effect of 16:1-PCer on sterol distribution was less dramatic, and no displacement of sterol from the PSM environment was observed with 12:1- and 14:1-PCer. The results are discussed in relation to other structural features that affect the bilayer properties of ceramides.


Assuntos
Ceramidas/química , Bicamadas Lipídicas/química , Calorimetria , Colesterol/química , Estrutura Molecular , Fosfatidilcolinas/química , Esfingomielinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...