Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Mol Cell Proteomics ; 23(5): 100747, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38490531

RESUMO

Although immune tolerance evolved to reduce reactivity with self, it creates a gap in the adaptive immune response against microbes that decorate themselves in self-like antigens. This is particularly apparent with carbohydrate-based blood group antigens, wherein microbes can envelope themselves in blood group structures similar to human cells. In this study, we demonstrate that the innate immune lectin, galectin-4 (Gal-4), exhibits strain-specific binding and killing behavior towards microbes that display blood group-like antigens. Examination of binding preferences using a combination of microarrays populated with ABO(H) glycans and a variety of microbial strains, including those that express blood group-like antigens, demonstrated that Gal-4 binds mammalian and microbial antigens that have features of blood group and mammalian-like structures. Although Gal-4 was thought to exist as a monomer that achieves functional bivalency through its two linked carbohydrate recognition domains, our data demonstrate that Gal-4 forms dimers and that differences in the intrinsic ability of each domain to dimerize likely influences binding affinity. While each Gal-4 domain exhibited blood group-binding activity, the C-terminal domain (Gal-4C) exhibited dimeric properties, while the N-terminal domain (Gal-4N) failed to similarly display dimeric activity. Gal-4C not only exhibited the ability to dimerize but also possessed higher affinity toward ABO(H) blood group antigens and microbes expressing glycans with blood group-like features. Furthermore, when compared to Gal-4N, Gal-4C exhibited more potent antimicrobial activity. Even in the context of the full-length protein, where Gal-4N is functionally bivalent by virtue of Gal-4C dimerization, Gal-4C continued to display higher antimicrobial activity. These results demonstrate that Gal-4 exists as a dimer and exhibits its antimicrobial activity primarily through its C-terminal domain. In doing so, these data provide important insight into key features of Gal-4 responsible for its innate immune activity against molecular mimicry.

3.
Presse Med ; 52(4): 104211, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981194

RESUMO

RBC transfusion remains a cornerstone in the treatment of sickle cell disease (SCD). However, as with many interventions, transfusion of RBCs is not without risk. Allogeneic RBC exposure can result in the development of alloantibodies, which can make it difficult to find compatible RBCs for future transfusion and increases the likelihood of life-threatening complications. The development of RBC alloantibodies occurs when a patient's immune system produces alloantibodies against foreign alloantigens present on RBCs. Despite its longstanding recognition, RBC alloimmunization has increasingly become a challenge when caring for patients with SCD. The growing prominence of alloimmunization can be attributed to several factors, including expanded indications for transfusions, increased lifespan of patients with SCD, and inadequate approaches to prevent alloimmunization. Recognizing these challenges, recent observational studies and preclinical models have begun to elucidate the immune pathways that underpin RBC alloimmunization. These emerging data hold promise in paving the way for innovative prevention strategies, with the goal of increasing the safety and efficacy of RBC transfusion in patients with SCD who are most vulnerable to alloimmunization.


Assuntos
Anemia Falciforme , Isoanticorpos , Humanos , Eritrócitos , Anemia Falciforme/terapia , Anemia Falciforme/complicações
4.
Blood ; 142(12): 1082-1098, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37363865

RESUMO

Antibodies against fetal red blood cell (RBC) antigens can cause hemolytic disease of the fetus and newborn (HDFN). Reductions in HDFN due to anti-RhD antibodies have been achieved through use of Rh immune globulin (RhIg), a polyclonal antibody preparation that causes antibody-mediated immunosuppression (AMIS), thereby preventing maternal immune responses against fetal RBCs. Despite the success of RhIg, it is only effective against 1 alloantigen. The lack of similar interventions that mitigate immune responses toward other RBC alloantigens reflects an incomplete understanding of AMIS mechanisms. AMIS has been previously attributed to rapid antibody-mediated RBC removal, resulting in B-cell ignorance of the RBC alloantigen. However, our data demonstrate that antibody-mediated RBC removal can enhance de novo alloimmunization. In contrast, inclusion of antibodies that possess the ability to rapidly remove the target antigen in the absence of detectable RBC clearance can convert an augmented antibody response to AMIS. These results suggest that the ability of antibodies to remove target antigens from the RBC surface can trigger AMIS in situations in which enhanced immunity may otherwise occur. In doing so, these results hold promise in identifying key antibody characteristics that can drive AMIS, thereby facilitating the design of AMIS approaches toward other RBC antigens to eliminate all forms of HDFN.


Assuntos
Eritroblastose Fetal , Eritrócitos , Feminino , Recém-Nascido , Humanos , Eritrócitos/metabolismo , Anticorpos , Tolerância Imunológica , Terapia de Imunossupressão , Imunoglobulina rho(D) , Isoantígenos , Isoanticorpos
5.
Blood ; 142(8): 742-747, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37367252

RESUMO

Among the risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ABO(H) blood group antigens are among the most recognized predictors of infection. However, the mechanisms by which ABO(H) antigens influence susceptibility to COVID-19 remain incompletely understood. The receptor-binding domain (RBD) of SARS-CoV-2, which facilitates host cell engagement, bears significant similarity to galectins, an ancient family of carbohydrate-binding proteins. Because ABO(H) blood group antigens are carbohydrates, we compared the glycan-binding specificity of SARS-CoV-2 RBD with that of galectins. Similar to the binding profile of several galectins, the RBDs of SARS-CoV-2, including Delta and Omicron variants, exhibited specificity for blood group A. Not only did each RBD recognize blood group A in a glycan array format, but each SARS-CoV-2 virus also displayed a preferential ability to infect blood group A-expressing cells. Preincubation of blood group A cells with a blood group-binding galectin specifically inhibited the blood group A enhancement of SARS-CoV-2 infection, whereas similar incubation with a galectin that does not recognize blood group antigens failed to impact SARS-CoV-2 infection. These results demonstrated that SARS-CoV-2 can engage blood group A, providing a direct link between ABO(H) blood group expression and SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Sistema ABO de Grupos Sanguíneos , Galectinas
6.
Sci Rep ; 13(1): 5324, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005394

RESUMO

Microbial glycan microarrays (MGMs) populated with purified microbial glycans have been used to define the specificity of host immune factors toward microbes in a high throughput manner. However, a limitation of such arrays is that glycan presentation may not fully recapitulate the natural presentation that exists on microbes. This raises the possibility that interactions observed on the array, while often helpful in predicting actual interactions with intact microbes, may not always accurately ascertain the overall affinity of a host immune factor for a given microbe. Using galectin-8 (Gal-8) as a probe, we compared the specificity and overall affinity observed using a MGM populated with glycans harvested from various strains of Streptococcus pneumoniae to an intact microbe microarray (MMA). Our results demonstrate that while similarities in binding specificity between the MGM and MMA are apparent, Gal-8 binding toward the MMA more accurately predicted interactions with strains of S. pneumoniae, including the overall specificity of Gal-8 antimicrobial activity. Taken together, these results not only demonstrate that Gal-8 possesses antimicrobial activity against distinct strains of S. pneumoniae that utilize molecular mimicry, but that microarray platforms populated with intact microbes present an advantageous strategy when exploring host interactions with microbes.


Assuntos
Anti-Infecciosos , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Galectinas/metabolismo , Polissacarídeos/metabolismo
7.
Nat Commun ; 14(1): 1638, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015925

RESUMO

The pathogenesis of multi-organ dysfunction associated with severe acute SARS-CoV-2 infection remains poorly understood. Endothelial damage and microvascular thrombosis have been identified as drivers of COVID-19 severity, yet the mechanisms underlying these processes remain elusive. Here we show alterations in fluid shear stress-responsive pathways in critically ill COVID-19 adults as compared to non-COVID critically ill adults using a multiomics approach. Mechanistic in-vitro studies, using microvasculature-on-chip devices, reveal that plasma from critically ill COVID-19 adults induces fibrinogen-dependent red blood cell aggregation that mechanically damages the microvascular glycocalyx. This mechanism appears unique to COVID-19, as plasma from non-COVID sepsis patients demonstrates greater red blood cell membrane stiffness but induces less significant alterations in overall blood rheology. Multiomics analyses in pediatric patients with acute COVID-19 or the post-infectious multi-inflammatory syndrome in children (MIS-C) demonstrate little overlap in plasma cytokine and metabolite changes compared to adult COVID-19 patients. Instead, pediatric acute COVID-19 and MIS-C patients show alterations strongly associated with cytokine upregulation. These findings link high fibrinogen and red blood cell aggregation with endotheliopathy in adult COVID-19 patients and highlight differences in the key mediators of pathogenesis between adult and pediatric populations.


Assuntos
COVID-19 , Humanos , Criança , Adulto , SARS-CoV-2 , Estado Terminal , Citocinas , Fibrinogênio
8.
iScience ; 26(1): 105798, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36691627

RESUMO

Enzymes catalyze biochemical reactions and play critical roles in human health and disease. Enzyme variants and deficiencies can lead to variable expression of glycans, which can affect physiology, influence predilection for disease, and/or directly contribute to disease pathogenesis. Although certain well-characterized enzyme deficiencies result in overt disease, some of the most common enzyme deficiencies in humans form the basis of blood groups. These carbohydrate blood groups impact fundamental areas of clinical medicine, including the risk of infection and severity of infectious disease, bleeding risk, transfusion medicine, and tissue/organ transplantation. In this review, we examine the enzymes responsible for carbohydrate-based blood group antigen biosynthesis and their expression within the human population. We also consider the evolutionary selective pressures, e.g. malaria, that may account for the variation in carbohydrate structures and the implications of this biology for human disease.

9.
Blood ; 141(21): 2642-2653, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36638335

RESUMO

Antibodies against red blood cell (RBC) alloantigens can increase morbidity and mortality among transfusion recipients. However, alloimmunization rates can vary dramatically, as some patients never generate alloantibodies after transfusion, whereas others not only become alloimmunized but may also be prone to generating additional alloantibodies after subsequent transfusion. Previous studies suggested that CD4 T-cell responses that drive alloantibody formation recognize the same alloantigen engaged by B cells. However, because RBCs express numerous antigens, both internally and externally, it is possible that CD4 T-cell responses directed against intracellular antigens may facilitate subsequent alloimmunization against a surface RBC antigen. Here, we show that B cells can acquire intracellular antigens from RBCs. Using a mouse model of donor RBCs expressing 2 distinct alloantigens, we demonstrate that immune priming to an intracellular antigen, which would not be detected by any currently used RBC compatibility assays, can directly influence alloantibody formation after exposure to a subsequent distinct surface RBC alloantigen. These findings suggest a previously underappreciated mechanism whereby transfusion recipient responders may exhibit an increased rate of alloimmunization because of prior immune priming toward intracellular antigens.


Assuntos
Transfusão de Eritrócitos , Isoanticorpos , Transfusão de Eritrócitos/efeitos adversos , Eritrócitos , Antígenos , Isoantígenos , Imunização
10.
Transfusion ; 63(3): 457-462, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36708051

RESUMO

INTRODUCTION: The impact of blood storage on red blood cell (RBC) alloimmunization remains controversial, with some studies suggesting enhancement of RBC-induced alloantibody production and others failing to observe any impact of storage on alloantibody formation. Since evaluation of storage on RBC alloimmunization in patients has examined antibody formation against a broad range of alloantigens, it remains possible that different clinical outcomes reflect a variable impact of storage on alloimmunization to specific antigens. METHODS: RBCs expressing two distinct model antigens, HEL-OVA-Duffy (HOD) and KEL, separately or together (HOD × KEL), were stored for 0, 8, or 14 days, followed by detection of antigen levels prior to transfusion. Transfused donor RBC survival was assessed within 24 h of transfusion, while IgM and IgG antibody production were assessed 5 and 14 days after transfusion. RESULTS: Stored HOD or KEL RBCs retained similar HEL or KEL antigen levels, respectively, as fresh RBCs, but did exhibit enhanced RBC clearance with increased storage age. Storage enhanced IgG antibody formation against HOD, while the oppositive outcome occurred following transfusion of stored KEL RBCs. The distinct impact of storage on HOD or KEL alloimmunization did not appear to reflect intrinsic differences between HOD or KEL RBCs, as transfusion of stored HOD × KEL RBCs resulted in increased IgG anti-HOD antibody development and reduced IgG anti-KEL antibody formation. CONCLUSIONS: These data demonstrate a dichotomous impact of storage on immunization to distinct RBC antigens, offering a possible explanation for inconsistent clinical experience and the need for additional studies on the relationship between RBC storage and alloimmunization.


Assuntos
Antígenos , Transfusão de Eritrócitos , Camundongos , Animais , Transfusão de Eritrócitos/efeitos adversos , Eritrócitos , Isoantígenos , Isoanticorpos , Imunoglobulina G
11.
Annu Rev Pathol ; 18: 537-564, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36351365

RESUMO

While red blood cell (RBC) transfusion is the most common medical intervention in hospitalized patients, as with any therapeutic, it is not without risk. Allogeneic RBC exposure can result in recipient alloimmunization, which can limit the availability of compatible RBCs for future transfusions and increase the risk of transfusion complications. Despite these challenges and the discovery of RBC alloantigens more than a century ago, relatively little has historically been known regarding the immune factors that regulate RBC alloantibody formation. Through recent epidemiological approaches, in vitro-based translational studies, and newly developed preclinical models, the processes that govern RBC alloimmunization have emerged as more complex and intriguing than previously appreciated. Although common alloimmunization mechanisms exist, distinct immune pathways can be engaged, depending on the target alloantigen involved. Despite this complexity, key themes are beginning to emerge that may provide promising approaches to not only actively prevent but also possibly alleviate the most severe complications of RBC alloimmunization.


Assuntos
Eritrócitos , Reação Transfusional , Humanos , Eritrócitos/metabolismo , Reação Transfusional/etiologia , Reação Transfusional/metabolismo , Isoanticorpos/metabolismo , Transfusão de Eritrócitos/efeitos adversos
12.
Artigo em Inglês | MEDLINE | ID: mdl-36483398

RESUMO

We describe severe acute respiratory coronavirus virus 2 (SARS-CoV-2) IgG seroprevalence and antigenemia among patients at a medical center in January-March 2021 using residual clinical blood samples. The overall seroprevalences were 17% by infection and 16% by vaccination. Spent or residual samples are a feasible alternative for rapidly estimating seroprevalence or monitoring trends in infection and vaccination.

13.
Front Mol Biosci ; 9: 893185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032675

RESUMO

Numerous studies have highlighted the utility of glycan microarray analysis for the elucidation of protein-glycan interactions. However, most current glycan microarray studies analyze glycan binding protein (GBP)-glycan interactions at a single protein concentration. While this approach provides useful information related to a GBP's overall binding capabilities, extrapolation of true glycan binding preferences using this method fails to account for printing variations or other factors that may confound relative binding. To overcome this limitation, we examined glycan array binding of three galectins over a range of concentrations to allow for a more complete assessment of binding preferences. This approach produced a richer data set than single concentration analysis and provided more accurate identification of true glycan binding preferences. However, while this approach can be highly informative, currently available data analysis approaches make it impractical to perform binding isotherms for each glycan present on currently available platforms following GBP evaluation. To overcome this limitation, we developed a method to directly optimize the efficiency of assessing association constants following multi-GBP concentration glycan array analysis. To this end, we developed programs that automatically analyze raw array data (kdMining) to generate output graphics (kaPlotting) following array analysis at multiple doses. These automatic programing methods reduced processing time from 32.8 h to 1.67 min. Taken together, these results demonstrate an effective approach to glycan array analysis that provides improved detail and efficiency when compared to previous methods.

14.
iScience ; 25(7): 104482, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35754739

RESUMO

Adaptive immunity can target a nearly infinite range of antigens, yet it is tempered by tolerogenic mechanisms that limit autoimmunity. Such immunological tolerance, however, creates a gap in adaptive immunity against microbes decorated with self-like antigens as a form of molecular mimicry. Our results demonstrate that the innate immune lectin galectin-7 (Gal-7) binds a variety of distinct microbes, all of which share features of blood group-like antigens. Gal-7 binding to each blood group expressing microbe, including strains of Escherichia coli, Klebsiella pneumoniae, Providencia alcalifaciens, and Streptococcus pneumoniae, results in loss of microbial viability. Although Gal-7 also binds red blood cells (RBCs), this interaction does not alter RBC membrane integrity. These results demonstrate that Gal-7 recognizes a diverse range of microbes, each of which use molecular mimicry while failing to induce host cell injury, and thus may provide an innate form of immunity against molecular mimicry.

15.
Transfusion ; 62(6): 1177-1187, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522536

RESUMO

BACKGROUND: Platelet transfusions (PTxs) are often given to septic preterm neonates at high platelet count thresholds in an attempt to reduce bleeding risk. However, the largest randomized controlled trial (RCT) of neonatal transfusion thresholds found higher mortality and/or major bleeding in infants transfused at higher thresholds. Using a murine model, we investigated the effects of adult PTx on neonatal sepsis-induced mortality, systemic inflammation, and platelet consumption. STUDY DESIGN AND METHODS: Polymicrobial sepsis was induced via intraperitoneal injection of cecal slurry preparations (CS1, 2, 3) into P10 pups. Two hours after infection, pups were transfused with washed adult Green Flourescent Protein (GFP+) platelets or control. Weights, platelet counts, and GFP% were measured before 4 and 24 h post-infection. At 24 h, blood was collected for quantification of plasma cytokines. RESULTS: The CS batches varied in 24 h mortality (11%, 73%, and 30% in CS1, 2, and 3, respectively), due to differences in bacterial composition. PTx had differential effects on sepsis-induced mortality and systemic inflammatory cytokines, increasing both in mice infected with CS1 (low mortality) and decreasing both in mice infected with CS2 and 3. In a mathematical model of platelet kinetics, the consumption of transfused adult platelets was higher than that of endogenous neonatal platelets, regardless of CS batch. DISCUSSION: Our findings support the hypothesis that transfused adult platelets are consumed faster than endogenous neonatal platelets in sepsis and demonstrate that PTx can enhance or attenuate neonatal inflammation and mortality in a model of murine polymicrobial sepsis, depending on the composition of the inoculum and/or the severity of sepsis.


Assuntos
Sepse Neonatal , Sepse , Animais , Citocinas , Modelos Animais de Doenças , Humanos , Camundongos , Sepse Neonatal/terapia , Transfusão de Plaquetas , Sepse/terapia
16.
Transfusion ; 62(5): 948-953, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35470900

RESUMO

BACKGROUND: Alloimmunization can be a significant barrier to red blood cell (RBC) transfusion. While alloantigen matching protocols hold promise in reducing alloantibody formation, transfusion-dependent patients can still experience RBC alloimmunization and associated complications even when matching protocols are employed. As a result, complementary strategies capable of actively preventing alloantibody formation following alloantigen exposure are warranted. STUDY DESIGN AND METHODS: We examined whether pharmacological removal of macrophages using clodronate may provide an additional strategy to actively inhibit RBC alloimmunization using two preclinical models of RBC alloimmunization. To accomplish this, mice were treated with clodronate, followed by transfusion of RBCs expressing the HOD (HEL, OVA, and Duffy) or KEL antigens. On days 5 and 14 post transfusion, anti-HOD or anti-KEL IgM and IgG antibodies were evaluated. RESULTS: Low dose clodronate effectively eliminated key marginal zone macrophage populations from the marginal sinus. Prior treatment with clodronate, but not empty liposomes, also significantly inhibited IgM and IgG anti-HOD alloantibody formation following transfusion of HOD RBCs. Similar exposure to clodronate inhibited IgM and IgG antibody formation following KEL RBC transfusion. CONCLUSIONS: Clodronate can inhibit anti-HOD and anti-KEL antibody formation following RBC transfusion in preclinical models. These results suggest that clodronate may provide an alternative approach to actively inhibit or prevent the development of alloantibodies following RBC transfusion, although future studies will certainly be needed to fully explore this possibility.


Assuntos
Ácido Clodrônico , Isoantígenos , Animais , Ácido Clodrônico/farmacologia , Eritrócitos , Humanos , Imunoglobulina G , Imunoglobulina M , Isoanticorpos , Camundongos
17.
Methods Mol Biol ; 2442: 1-40, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320517

RESUMO

Galectins are a large family of carbohydrate binding proteins with members in nearly every lineage of multicellular life. Through tandem and en-mass genome duplications, over 15 known vertebrate galectins likely evolved from a single common ancestor extant in pre-chordate lineages. While galectins have divergently evolved numerous functions, some of which do not involve carbohydrate recognition, the vast majority of the galectins have retained the conserved ability to bind variably modified polylactosamine (polyLacNAc) residues on glycans that modify proteins and lipids on the surface of host cells and pathogens. In addition to their direct role in microbial killing, many proposed galectin functions in the immune system and cancer involve crosslinking glycosylated receptors and modifying signaling pathways or sensitivity to antigen from the outside in. However, a large body of work has uncovered intracellular galectin functions mediated by carbohydrate- and non-carbohydrate-dependent interactions. In the cytoplasm, galectins can tune intracellular kinase and G-protein-coupled signaling cascades important for nutrient sensing, cell cycle progression, and transformation. Particularly, but interconnected pathways, cytoplasmic galectins serve the innate immune system as sensors of endolysosomal damage, recruiting and assembling the components of autophagosomes during intracellular infection through carbohydrate-dependent and -independent activities. In the nucleus, galectins participate in pre-mRNA splicing perhaps through interactions with non-coding RNAs required for assembly of spliceosomes. Together, studies of galectin function paint a picture of a functionally dynamic protein family recruited during eons of evolution to regulate numerous essential cellular processes in the context of multicellular life.


Assuntos
Galectinas , Sistema Imunitário , Ciclo Celular , Galectinas/metabolismo , Glicosilação , Sistema Imunitário/metabolismo , Transdução de Sinais
18.
Methods Mol Biol ; 2442: 55-74, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320519

RESUMO

Galectins are lectins having the capacity to recognize ß-galactose-containing glycan structures and are widely distributed among various taxa. However, the exact physiological and biochemical functions mediated by galectins that necessitate their wide occurrence among diverse species have not yet been delineated in a precise manner. Purification of recombinant galectins in active form is a fundamental requirement to elucidate their biological function. In this chapter, we are describing methods to recombinantly express and purify galectins using three different methods of affinity purification, i.e., lactosyl-Sepharose chromatography for fungal galectin Coprinopsis cinerea galectin 2 (CGL2), nickel-chromatography for histidine-tagged human galectin-7, and glutathione-Sepharose chromatography for Glutathione S-transferase-tagged (GST-tagged) human galectin-7. Step-by-step instructions are provided for obtaining the above-mentioned recombinant galectins that retain carbohydrate-binding activity and are suitable for conducting biochemical experiments.


Assuntos
Galectina 2 , Galectinas , Carboidratos , Cromatografia de Afinidade , Galactose , Galectinas/química , Humanos
19.
Methods Mol Biol ; 2442: 75-87, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320520

RESUMO

Galectins can display unique sensitivity to oxidative changes that result in significant conformational alterations that prevent carbohydrate recognition. While a variety of approaches can be utilized to prevent galectin oxidation, several of these require inclusion of reducing agents that not only prevent galectins from undergoing oxidative inactivation but can also interfere with normal redox potentials required for fundamental cellular processes. To overcome the limitations associated with placing cells in an artificial reducing environment, cysteine residues on galectins can be directly alkylated with iodoacetamide to form a stable thioether adduct that is resistant to further modification. Iodoacetamide alkylated galectin remains stable over prolonged periods of time and retains the carbohydrate binding and biological activities of the protein. As a result, this approach allows examination of the biological roles of a stabilized form of galectin-1 without introducing the confounding variables that can occur when typical soluble reducing agents are employed.


Assuntos
Galectina 1 , Galectinas , Alquilação , Galectina 1/química , Galectina 1/metabolismo , Galectinas/metabolismo , Iodoacetamida , Espectrometria de Massas
20.
Methods Mol Biol ; 2442: 151-168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320525

RESUMO

Glycan binding proteins (GBPs) possess the unique ability to regulate a wide variety of biological processes through interactions with highly modifiable cell surface glycans. While many studies demonstrate the impact of glycan modification on GBP recognition and activity, the relative contribution of subtle changes in glycan structure on GBP binding can be difficult to define. To overcome limitations in the analysis of GBP-glycan interactions, recent studies utilized glycan microarray platforms containing hundreds of structurally defined glycans. These studies not only provided important information regarding GBP-glycan interactions in general but have also resulted in significant insight into binding specificity and biological activity of the galectin family. We will describe the methods used when employing glycan microarray platforms to examine galectin-glycan binding specificity and function.


Assuntos
Galectinas , Polissacarídeos , Proteínas de Transporte/metabolismo , Galectinas/metabolismo , Análise em Microsséries/métodos , Polissacarídeos/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...